Open Access
E3S Web Conf.
Volume 323, 2021
V International Scientific and Technical Conference Modern Power Systems and Units (MPSU 2021)
Article Number 00012
Number of page(s) 8
Published online 10 November 2021
  1. S.C. Stultz, J.B. Kitto, Steam its generation and use. 41st edition, The Babcook & Wilcox Company, USA (2005) [Google Scholar]
  2. D. Zhang, Ultra-supercritical coal power plants Materials, technologies and optimisation, Woodhead Publishing Series in Energy: Number 41, UK (2013) [Google Scholar]
  3. A. Gianfrancesco, Materials for Ultra-supercritical and Advanced Ultra-supercritical Power Plants, Woodhead Publishing Series in Energy, 104 (2017) [Google Scholar]
  4. A. Hernas, Materialy do budowy kotlów na parametry nadkrytyczne, Nowa Energia, 5–6 (2013) [Google Scholar]
  5. K.S. Ravlchandran, K. An, R.E. Dutton and S.L. Semlatin, Microstructure and thermal conductivity of layered Thermal Barrier Coatings processed by plasma spray and physical vapor deposition techniques, MRS Proceedings, 434, no. 27, Cambridge University Press (2011) [Google Scholar]
  6. P. Sosnowy, M. Góral, S. Dudek, M. Drajewicz and T. Gancarczyk, Mikrostruktura powlokowych barier cieplnych natryskiwanych metoda APS z zastosowaniem nowych proszków ceramicznych, Przeglad spawalnictwa, 8, no. 84 (2012) [Google Scholar]
  7. K.W. Schlichting, N.P. Padture, P.G. Klemens, Thermal conductivity of dense and porous yttria-stabilized zirconia, Journal of Materials Science, 36 (2001) [Google Scholar]
  8. M. Radovic, E. Lara-Curzio, R. Trejo, H. Wang and W.D. Porter, Thermo-Physical Properties of Ni-YSZ as a Function of Temperature and Porosity, Ceramic Engineering and Science Proceedings, 27, no. 4 (2008) [Google Scholar]
  9. N.P. Padture, M. Gell and E.H. Jordan, Thermal barrier Coatings for Gas-Turbine Engine Applications, Science, 296, no. 5566 (2002) [Google Scholar]
  10. D.W. Parker, Thermal barrier coatings for gas turbines, automotive engines and diesel equipment, Materials & Design, 13, no. 6 (1992) [Google Scholar]
  11. T. Huttel, Investigation of the High Temperature Performance of Thermal Barrier Coating Systems for Steam Turbine Applications, Ph.D. dissertation, RWTH Aachen University, Germany (2010) [Google Scholar]
  12. X. Guo et al., Thermal and stress analyses of a novel coated steam dual pipe system for use in advanced ultra-supercritical power plant, Pressure Vessels and Piping, 176, 103903 (2019) [Google Scholar]
  13. M. Granda, M. Trojan, D. Taler, CFD analysis of steam superheater operation in steady and transient state, Energy, 199, 117423 (2020) [Google Scholar]
  14. B. Li, X. Fan, D. Li and P. Jiang, Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis, Mathematical Problems in Engineering (2017) [Google Scholar]
  15. K.J. An, Assessment of the Thermal Conductivity of Yttria-Stabilized Zirconia Coating, Materials Transactions, 55, no. 1, (2014) [Google Scholar]
  16. Kaczmarski K., Numerical model of steam pipeline with thermal insulation, International Journal of Numerical Methods for Heat & Fluid Flow, 30 (5), (2019) [Google Scholar]
  17. Taler D., Kaczmarski K., Mathematical Modelling of the Transient Response of Pipeline, Journal of Thermal Science, 25 (6), (2016) [Google Scholar]
  18. M. Trojan, M. Granda, Modeling of the boiler economizer, Matec Web of Conferences, 240, 050034 (2018) [Google Scholar]
  19. J. Taler, P. Duda, Solving Direct and Inverse Heat Conduction Problems, Springer, 2006 [Google Scholar]
  20. D. Taler, Numerical Modelling and Experimental Testing of Heat Exchangers, 1st ed., Springer (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.