Open Access
Issue
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
Article Number 00033
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202233600033
Published online 17 January 2022
  1. Xuan, Y., & Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of heat and fluid flow, 21(1), 58-64 [CrossRef] [Google Scholar]
  2. Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab., IL (United States). [Google Scholar]
  3. Buongiorno, J. (2006). Convective transport in nanofluids. [Google Scholar]
  4. Prakash, M., & Giannelis, E. P. (2007). Mechanism of heat transport in nanofluids. Journal of computer-aided materials design, 14(1), 109-117. [CrossRef] [Google Scholar]
  5. Sheikholeslami, M., & Ganji, D. D. (2014). Numerical investigation for two phase modeling of nanofluid in a rotating system with permeable sheet. Journal of Molecular Liquids, 194, 13-19. [CrossRef] [Google Scholar]
  6. Stefan, J. (1875). Versucheüber die scheinbareAdhäsion. Annalen der Physik, 230(2), 316-318. [CrossRef] [Google Scholar]
  7. Domairry, G., & Aziz, A. (2009). Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method. Mathematical Problems in Engineering, 2009. [CrossRef] [Google Scholar]
  8. Mahmood, M., Asghar, S., & Hossain, M. A. (2007). Squeezed flow and heat transfer over a porous surface for viscous fluid. Heat and mass Transfer, 44(2), 165-173. [CrossRef] [Google Scholar]
  9. Mustafa, M., Hayat, T., & Obaidat, S. (2012). On heat and mass transfer in the unsteady squeezing flow between parallel plates. Meccanica, 47(7), 1581-1589. [CrossRef] [Google Scholar]
  10. Dogonchi, A. S., & Ganji, D. D. (2016). Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation. Journal of Molecular Liquids, 220, 592-603. [CrossRef] [Google Scholar]
  11. Sheikholeslami, M., Abelman, S., & Ganji, D. D. (2014). Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. International Journal of Heat and Mass Transfer, 79, 212-222. [CrossRef] [Google Scholar]
  12. McDonald, D. A. Blood flow in arteries. 1974. Edward Arnold, London, 92-95. [Google Scholar]
  13. Eldabe, N. T. M., Saddeck, G., & El-Sayed, A. F. (2001). Heat transfer of MHD non-Newtonian Casson fluid flow between two rotating cylinders. Mechanics and Mechanical Engineering, 5(2), 237-251. [Google Scholar]
  14. Boyd, J., Buick, J. M., & Green, S. (2007). Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Physics of Fluids, 19(9), 093103. [CrossRef] [Google Scholar]
  15. Fredrickson, A. G. (1964). Principles and applications of rheology. Prentice-Hall. [Google Scholar]
  16. Mustefa, M., Hayet, T., Pop, I., & Aziz, A. (2011). Unstedybounderylayar flow of a Casson fluid impulsively startad moving fletplte. Heat Transfer–Asian Ras, 40(6), 563-76. [CrossRef] [Google Scholar]
  17. Sheikholeslami, M., Azimi, M., & Ganji, D. D. (2015). Application of differential transformation method for nanofluid flow in a semi-permeable channel considering magnetic field effect. International Journal for Computational Methods in Engineering Science and Mechanics, 16(4), 246-255. [CrossRef] [Google Scholar]
  18. Jang, M. J., Chen, C. L., & Liu, Y. C. (2001). Two-dimensional differential transform for partial differential equations. Applied Mathematics and Computation, 121(2-3), 261-270. [CrossRef] [Google Scholar]
  19. Mohyud-Din, S. T., & Yildirim, A. (2010). Ma’s variation of parameters method for Fisher’s equations. Advances in Applied Mathematics and Mechanics, 2(3), 379-388. [CrossRef] [Google Scholar]
  20. Sheikholeslami, M., Ellahi, R., Ashorynejad, H. R., Domairry, G., & Hayat, T. (2014). Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. Journal of Computational and Theoretical Nanoscience, 11(2), 486-496. [CrossRef] [Google Scholar]
  21. Sheikholeslami, M., Ganji, D. D., & Ashorynejad, H. R. (2013). Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technology, 239, 259-265. [CrossRef] [Google Scholar]
  22. Sheikholeslami, M., & Ganji, D. D. (2013). Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technology, 235, 873-879. [CrossRef] [Google Scholar]
  23. He, J. H. (2000). A new perturbation technique which is also valid for large parameters. Journal of Sound and Vibration, 229(5), 1257-1263. [CrossRef] [Google Scholar]
  24. Rohlf, K., & Tenti, G. (2001). The role of the Womersley number in pulsatile blood flow: a theoretical study of the Casson model. Journal of biomechanics, 34(1), 141-148. [CrossRef] [PubMed] [Google Scholar]
  25. Lohmann, T., Bock, H. G., & Schloeder, J. P. (1992). Numerical methods for parameter estimation and optimal experiment design in chemical reaction systems. Industrial & engineering chemistry research, 31(1), 54-57. [CrossRef] [Google Scholar]
  26. Rapp, B. E. (2016). Microfluidics: modeling, mechanics and mathematics. William Andrew. [Google Scholar]
  27. Sheikholeslami, M., & Ganji, D. D. (2016). External magnetic field effects on hydrothermal treatment of nanofluid: numerical and analytical studies. William Andrew. [Google Scholar]
  28. El Harfouf, A., Wakif, A., & Mounir, S. H. (2020). Heat Transfer Analysis on Squeezing Unsteady MHD Nanofluid Flow Between Two Parallel Plates Considering Thermal Radiation, Magnetic and Viscous Dissipations Effects a Solution by Using Homotopy Perturbation Method. Sensor Letters, 18(2), 113-121. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.