Open Access
Issue
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
Article Number 00034
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202233600034
Published online 17 January 2022
  1. “IRENA_RE_Capacity_Statistics_2021.pdf.” [Google Scholar]
  2. A. Dabbaghiyan, F. Fazelpour, M. D. Abnavi, and M. A. Rosen, “Evaluation of wind energy potential in province of Bushehr, Iran,” Renew. Sustain. Energy Rev., vol. 55, pp. 455–466, Mar. 2016, doi: 10.1016/j.rser.2015.10.148. [CrossRef] [Google Scholar]
  3. A. Devis, N. P. M. V. Lipzig, and M. Demuzere, “Should future wind speed changes be taken into account in wind farm development,” Environ. Res. Lett., vol. 13, no. 6, p. 064012, May 2018, doi: 10.1088/1748-9326/aabff7. [CrossRef] [Google Scholar]
  4. B. G. Brown, R. W. Katz, and A. H. Murphy, “Time Series Models to Simulate and Forecast Wind Speed and Wind Power,” J. Clim. Appl. Meteorol., vol. 23, no. 8, pp. 1184–1195, 1984. [CrossRef] [Google Scholar]
  5. J. L. Torres, A. García, M. D. Blas, and A. D. Francisco, “Forecast of hourly average wind speed with ARMA models in Navarre (Spain),” Sol. Energy, vol. 1, no. 79, pp. 65–77, 2005, doi: 10.1016/j.solener.2004.09.013. [CrossRef] [Google Scholar]
  6. E. Cadenas and W. Rivera, “Wind speed forecasting in the South Coast of Oaxaca, México,” Renew. Energy, vol. 32, no. 12, pp. 2116–2128, 2007. [CrossRef] [Google Scholar]
  7. S. Yuan and Y. Shen, “A Wind Speed Prediction Model Based on ARIMA and Improved Kalman Filter Algorithm,” J. Phys. Conf. Ser., vol. 1650, p. 032095, Oct. 2020, doi: 10.1088/17426596/1650/3/032095. [CrossRef] [Google Scholar]
  8. “Wind Resource Data for Wind Farm Developments | Vortex FDC,” VORTEX. https://vortexfdc.com/ [Google Scholar]
  9. W. Velicer and J. Fava, “Time Series Analysis,” vol. 2, 2003. doi: 10.1002/0471264385.wei0223. [Google Scholar]
  10. C. Liu, S. C. H. Hoi, P. Zhao, and J. Sun, “Online ARIMA Algorithms for Time Series Prediction,” The Thirtieth AAAI Conference on Artificial Intelligence, Feb.2016.:https://www.aaai.org/ocs/index.php/AAA I/AAAI16/paper/view/12135 [Google Scholar]
  11. T. Dimri, S. Ahmad, and M. Sharif, “Time series analysis of climate variables using seasonal ARIMA approach,” J. Earth Syst. Sci., vol. 129, no. 1, p. 149, Jun. 2020, doi: 10.1007/s12040-020-01408-x. [CrossRef] [Google Scholar]
  12. P. Mantalos, K. Mattheou, and A. Karagrigoriou, “Forecasting ARMA models: a comparative study of information criteria focusing on MDIC,” J. Stat. Comput. Simul., vol. 80, no. 1, pp. 61–73, Jan. 2010, doi: 10.1080/00949650802464137. [CrossRef] [Google Scholar]
  13. B. B. Sahoo, R. Jha, A. Singh, and D. Kumar, “Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting,” Acta Geophys., vol. 67, no. 5, pp. 1471–1481, Oct. 2019, doi: 10.1007/s11600-019-00330-1. [CrossRef] [Google Scholar]
  14. B. Liu, C. Fu, A. Bielefield, and Y. Q. Liu, “Forecasting of Chinese Primary Energy Consumption in 2021 with GRU Artificial Neural Network,” Energies, vol. 10, no. 10, Art. no. 10, Oct. 2017, doi: 10.3390/en10101453. [Google Scholar]
  15. R. J. C. Chen, P. Bloomfield, and J. S. Fu, “An Evaluation of Alternative Forecasting Methods to Recreation Visitation,” J. Leis. Res., vol. 35, no. 4, pp.441–454, Dec. 2003, doi: 10.1080/00222216.2003.11950005. [CrossRef] [Google Scholar]
  16. K. R. Nair, V. Vanitha, and M. Jisma, “Forecasting of wind speed using ANN, ARIMA and Hybrid models,” in 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Jul. 2017, pp. 170–175. doi: 10.1109/ICICICT1.2017.8342555. [Google Scholar]
  17. E. Cadenas, W. Rivera, R. Campos-Amezcua, and C. Heard, “Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model,” Energies, vol. 9, no. 2, Art. no. 2, Feb. 2016, doi: 10.3390/en9020109. [CrossRef] [Google Scholar]
  18. N. H. Hussin, F. Yusof, ‘Aaishah Radziah Jamaludin, and S. M. Norrulashikin, “Forecasting Wind Speed in Peninsular Malaysia: An Application of ARIMA and ARIMA-GARCH Models,” Pertanika J. Sci. Technol., vol. 29, no. 1, Jan. 2021, doi: 10.47836/pjst.29.1.02. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.