Open Access
Issue
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
Article Number 00047
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202233600047
Published online 17 January 2022
  1. J. Wang, S. Zhou, Z. Zhang, and D. Yurchenko. High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Conversion and Management, 181, 645–652. (2019) [Google Scholar]
  2. J. Wang, G. Li, M. Zhang, G. Zhao, Z. Jin, K. Xu, and Z. Zhang (2018): Energy harvesting from flow-induced vibration: a lumped parameter model. [Google Scholar]
  3. S. Zhou, and J. Wang. Dual serial vortex-induced energy harvesting system for enhanced energy harvesting. AIP Advances, 8(7), 075221. (2018) [Google Scholar]
  4. M. Zhang, G. Zhao, and J. Wang. Study on fluid-induced vibration power harvesting of square columns under different attack angles. Geofluids, 2017, 1–18. (2017) [Google Scholar]
  5. V. Sivadas, AM. Wickenheiser, MN. Ghasemi-Nejhad. A study of several vortex-induced vibration techniques for piezoelectric wind energy harvesting. Active and Passive Smart Structures and Integrated Systems. (2011) [Google Scholar]
  6. HD. Akaydin, N. Elvin, Y. Andreopoulos. The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 21 025007. (2012) [Google Scholar]
  7. A. Mehmood, A. Abdelkefi, MR. Hajj, AH. Nayfeh, I. Akhtar, AO. Nuhait. Piezoelectric energy harvesting from vortex-induced vibrations of a circular cylinder. Journal of Sound and Vibration, 332(19), 4656–4667. (2013) [Google Scholar]
  8. LA. Weinstein, MR. Cacan, PM. So, PK. Wright. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows. Smart Mater. Struct. 21 045003. (2012). [Google Scholar]
  9. HL. Dai, A. Abdelkefi, Y. Yang, L. Wang. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations. Applied Physics Letters, 108(5), 053902. (2016) [Google Scholar]
  10. J. Wang, S. Zhou, Z. Zhang, D. Yurchenko. High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Conversion and Management, 181, 645–652. (2019) [Google Scholar]
  11. J. Wang, S. Gu, C. Zhang, G. Hu, G. Chen., K. Yang, and al. Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping. Energy Conversion and Management, 213, 112835. (2020) [Google Scholar]
  12. FR. Liu, WM. Zhang, LC. Zhao, HX. Zou, T. Tan, ZK. Peng, and al. Performance enhancement of wind energy harvester utilizing wake flow induced by double upstream flat-plates. Applied Energy, 257, 114034. (2020) [Google Scholar]
  13. S. Wang, W. Liao, Z. Zhang, Y. Liao, M. K. Yan. Development of a novel non-contact piezoelectric wind energy harvester excited by vortex-induced vibration. Energy Conversion and Management, 235, 113980. (2021) [Google Scholar]
  14. A. Mehmood, AH. Nayfeh, MR. Hajj. Effects of a non-linear energy sink (NES) on vortex-induced vibrations of a circular cylinder. Nonlinear Dynamics volume 77, pages 667–680. (2014) [Google Scholar]
  15. S. Leadenham, and A. Erturk. Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dynamics volume 79, pages 1727–1743. (2015) [Google Scholar]
  16. A.-B. Wang, Z. Trávníček, and K.-C. Chia. On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder. Physics of Fluids, 12(6), 1401–1410. (2000). [Google Scholar]
  17. S. Haque, S. Nowak, R. Callaghan, A. Mukerjee, R. Prasad, M. Rahman, and A. Mitra. A Case Study of Structural Industrial Pressure Vessel Under Wind Load. Paper presented at 2019 CIEC, New Orleans, LA. (2019) [Google Scholar]
  18. K. Yang, and al. Piezoelectric wind energy harvesting subjected to the conjunction of vortex-induced vibration and galloping: comprehensive parametric study and optimization. Smart Mater. Struct. 29 075035. (2020) [Google Scholar]
  19. M. Liu, and F. Yang. Finite element simulation of the effect of electric boundary conditions on the spherical indentation of transversely isotropic piezoelectric films. Smart Materials and Structures, 21(10), 105020. (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.