Open Access
Issue
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
Article Number 00053
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202233600053
Published online 17 January 2022
  1. Mark Z. Jacobson, Mark A. Delucchi, Zack A.F. Bauer, Savannag C. Goodman, William E. Chapman, Mary A. Cameron, Cedric Bozonnat. Goldstrom, Eleanor M. Hennessy. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 1, P 108–121 (2017). [Google Scholar]
  2. Heard, B.P, Brook, B.W Wigley, T.M Bradshaw, C.J. Burden of proof A comprehensive review of the feasibility of 100% renewable electricity systems. Renew Sustain. Energy Rev. 76, P 1122–1133 (2017). [CrossRef] [Google Scholar]
  3. Y. Suda and T. Shiba, “New Hybrid Suspension System with Active Control and Energy Reg System Dynamic Supplement, Vol. 25, [Google Scholar]
  4. Y. Suda, S. Nakadai and K. Nakano, “Hybrid Suspension System with Skyhook Control and Energy Regeneration (Development of Self Powered Active Suspension),” Vehicle System Dynamic Supplement, Vol. 19, 1998, pp. 619-634. [CrossRef] [Google Scholar]
  5. K. E. Graves, P. G. Iovenitti, D. Toncich, “Electromagnetic regenerative damping in vehicle suspension systems,” International Journal of Vehicle Design, vol. 24, no. 2–3, pp. 182–197, (2000). [CrossRef] [Google Scholar]
  6. L. Segel and X. Lu, “Vehicular resistance to motion as influenced by road roughness and highway alignment,” Australian Road Research, vol. 12, no. 4, pp. 211–222, (1982). [Google Scholar]
  7. X. Wang, Frequency analysis of vibration energy harvesting systems. Academic Press, (2016) [Google Scholar]
  8. D. Al-Yafeai, T. Darabseh, A-H. I. Mourad, “Quarter vs. Half Car Model Energy Harvesting Systems,” in 2019 IEEE Advances in Science and Engineering Technology International Conferences (ASET), pp. 1–5, (2019). [Google Scholar]
  9. B. Lafarge, C. Delebarre, S. Grondel, O. Curea, and A. Hacala, “Analysis and optimization of a piezoelectric harvester on a car damper,” Physics Procedia vol. 70, pp. 970–973 (2015). [CrossRef] [Google Scholar]
  10. S. F. Ali and S. Adhikari, “Energy harvesting dynamic vibration absorbers,” Journal of Applied Mechanics, vol. 80, no. 4, pp. 1-9 (2013). [Google Scholar]
  11. C. Madhav and S. F. Ali, “Harvesting energy from vibration absorber under random excitations,” IFAC-Pap., vol. 49, no. 1, pp. 807–812 (2016). [Google Scholar]
  12. Z. Fang, X. Guo, L. Xu, H. Zhang, “An optimal algorithm for energy recovery of hydraulic electromagnetic energy-regenerative shock absorber,” Applied Mathematics & Information Sciences, vol. 7, no. 6, pp. 2207-2214 (2013). [CrossRef] [Google Scholar]
  13. S. Gopalakannan, S. P. Kumar, V. Premsagar, T. R. Pradeep, “Design, Fabrication and Testing of Regenerative Shock Absorber (Linear Alternator Type),” International Journal of Applied Engineering Research, vol. 10, no. 8, pp. 6133-6137 (2015). [Google Scholar]
  14. B. Scully, L. Zuo, J. Shestani, and Y. Zhou, “Design and characterization of an electromagnetic energy harvester for vehicle suspensions,” in ASME 2009 International Mechanical Engineering Congress and Exposition, pp. 1007–1016 (2009). [CrossRef] [Google Scholar]
  15. Y. B. Kim, W. G. Hwang, C. D. Kee, H. B. Yi, “Active vibration control of a suspension system using an electromagnetic damper,” Proceedings of the Institution of Mechanical Engineers, Part J Automobile Engineering, vol. 215, no. 8, pp. 865–873 (2001). [CrossRef] [Google Scholar]
  16. P. Mitcheson and E. Yeatman, “Energy harvesting for pervasive computing,” Perada Magazines, pp. 1–3, 2008. De preference citer un autre papier [Google Scholar]
  17. P. Múčka, “Energy-harvesting potential of automobile suspension,” Vehicle System Dynamics, vol. 54, no. 12, pp. 1651–1670 (2016). [CrossRef] [Google Scholar]
  18. M. A. Abdelkareem, Xu Lin., Ali, Mohamed Kamal Ahmed, Elagouz, Ahmed, Mi, Jia Guo, Sijing, Liu, Yilun, Zuo, Lei “Vibration energy harvesting in automotive suspension system: A detailed review,” Appl. Energy, vol. 229, pp. 672–699, (2018). [CrossRef] [Google Scholar]
  19. Z. Jin-qiu, P. Zhi-zhao, Z. Lei, Z. Yu, “A review on energy-regenerative suspension systems for vehicles,” in Proceedings of the world congress on engineering, vol. 3, pp. 3–5 (2013). [Google Scholar]
  20. N. H. Amer, R. Ramli, H. M. Isa, W. N. L. Mahadi, M. A. Z. Abidin, “A review of energy regeneration capabilities in controllable suspension for passengers’ car,” Energy Education Science and Technology: Energy Science and Research., vol. 30, no. 1, pp. 143–158, (2012). [Google Scholar]
  21. M. Smith and F. Wang, “Performance benefits in passive vehicle suspensions employing inerters”, Vehicle System Dynamics, vol.42, no.4, pp.235-257, (2004). [CrossRef] [Google Scholar]
  22. H. Xiao, X. Wang, et S. John, “A dimensionless analysis of a 2DOF piezoelectric vibration energy harvester”, Mechanical Systems and Signal Processing, vol. 58-59, p 6-21 (2015) [Google Scholar]
  23. A. M. Molan et A. A. Kordani, “Optimization of Speed Hump Profiles Based on Vehicle Dynamic Performance Modeling”, J. Transp. Eng., vol. 140, no 8, p.10-18 (2014) [Google Scholar]
  24. S. Namee and B. Witchayangkoon, Crossroads vertical speed control devices: suggestion from observation, International Journal of Engineering, Management and Applied Sciences and Technologies, P 161-171 (2011), [Google Scholar]
  25. A. Akanmu, F. Alabi and O. Agboola, Towards efficient application of speed bumps as traffic calming device in Saki West Local Government area of Oyo state, Nigeria, J. of Environmental Sciences and Resources Management, pp 127-136 (2014). [Google Scholar]
  26. D. Pozuelo, A. Gauchia, E. Olmeda and V. Draz, Bump modeling and vehicle vertical dynamics prediction, Hindawi Publishing Corporation, Advances in Mechanical Engineering, Vol.2014, p 10-12, (2014). [Google Scholar]
  27. G. A. Hassaan, Car dynamics using quarter model and passive suspensions: Part II: A novel simple harmonic hump, Journal of Mechanical and Civil Engineering, 12 (1), 93-100 (2015). [Google Scholar]
  28. Norme de ralentisseur routière de type dos d’âne ou de type trapézoïdal Caracteristiques geometriques https://www.imanor.gov.ma/Norme/nm-13-1-204-2. [Google Scholar]
  29. E. Lefeuvre, A. Badel, C. Richard, L. Petit, and D. Guyomar, “A comparison between several vibration-powered piezoelectric generators for standalone systems,” Sensors and Actuators A: Physical., vol. 126, no. 2, pp. 405–416, (2006). [CrossRef] [Google Scholar]
  30. D. Al-Yafeai, T. Darabseh, et A.-H. I. Mourad, «Energy Harvesting from Car Suspension System Subjected to Random Excitation», (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.