Open Access
Issue |
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
|
|
---|---|---|
Article Number | 00068 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/202233600068 | |
Published online | 17 January 2022 |
- S. Elouarouar, H. Medromi and F. Moutaouakkil, “Energy Management in Multi-Rotors Unmanned Aerial Systems,” 2017 International Renewable and Sustainable Energy Conference (IRSEC), 2017, pp. 1-7, doi: 10.1109/IRSEC.2017.8477365. [Google Scholar]
- P. Liu, A. Y. Chen, Y.-N. Huang, J.-Y. Han, J.-S. Lai, S.-C. Kang, T.-H. Wu, M.-C. Wen, M.-H. Tsai, A review of rotorcraft Unmanned Aerial Vehicle (UAV) developments and applications in civil engineering, Smart Structures and Systems pp. 1065-1094 (Jun.2014). [CrossRef] [Google Scholar]
- N. Adnan, S. M. Nordin, M. A. bin Bahruddin, Sustainable interdependent networks from smart autonomous vehicle to intelligent transportation networks, in: Sustainable Interdependent Networks II, Springer, 2019, pp. 121-134. [CrossRef] [Google Scholar]
- DRONEII.com, Global Drone Market Report 2021-2026 (Accessed on 23-09-2021). [Google Scholar]
- DRONEII.com, TOP20 Drone Service Provider Ranking, March 2018 (Accessed on 22-09-2021). [Google Scholar]
- E. Bongermino, F. Mastrorocco, M. Tomaselli, V. G. Monopoli, D. Naso, Model and energy management system for a parallel hybrid electric unmanned aerial vehicle, in 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), IEEE, Edinburgh, United Kingdom, pp. 1868-1873 (Jun. 2017). [Google Scholar]
- R. R. Glassock, J. Y. Hung, L. F. Gonzalez, R. A. Walker, Multimodal hybrid powerplant for unmanned aerial systems (uas) robotics, In: Twenty-Fourth Bristol International Unmanned Air Vehicle Systems Conference, March 30th to April 1st 2009, Bristol United Kingdom. [Google Scholar]
- M. Hassanalian, A. Abdelke, Classifications, applications, and design challenges of drones: A review, Progress in Aerospace Sciences 91, pp. 99-131 (May 2017). [CrossRef] [Google Scholar]
- M. Jaeger, D. Adair, Conceptual design of a high-endurance hybrid electric unmanned aerial vehicle, Materials Today: Proceedings 4 (3) pp.4458-4468 (2017). [CrossRef] [Google Scholar]
- Y. Xie, A. Savvaris, A. Tsourdos, Fuzzy logic based equivalent consumption optimization of a hybrid electric propulsion system for unmanned aerial vehicles, Aerospace Science and Technology 85 pp.13-23 (2019). [CrossRef] [Google Scholar]
- T. Donateo, L. Spedicato, Fuel economy of hybrid electric flight, Applied energy 206 pp.723-738 (2017). [CrossRef] [Google Scholar]
- E. Bongermino, M. Tomaselli, V. G. Monopoli, G. Rizzello, F. Cupertino, D. Naso, Hybrid Aeronautical Propulsion: Control and Energy Management, IFAC-PapersOnLine 50 (2) pp.169-174 (Dec. 2017). [CrossRef] [Google Scholar]
- T. Kim, S. Kwon, Design and development of a fuel cell-powered small unmanned aircraft, International Journal of Hydrogen Energy 37 (1) pp. 615-622 (Jan. 2012). [CrossRef] [Google Scholar]
- P. Panagiotou, S. Fotiadis-Karras, K. Yakinthos, Conceptual design of a blended wing body male uav, Aerospace Science and Technology 73 pp. 32-47 (2018). [CrossRef] [Google Scholar]
- H. Shraim, A. Awada, R. Youness, A survey on quadrotors: Configurations, modelling and identification, control, collision avoidance, fault diagnosis and tolerant control, IEEE Aerospace and Electronic Systems Magazine 33 (7) pp.14-33 (2018). [CrossRef] [Google Scholar]
- S. Norouzi Ghazbi, Y. Aghli, M. Alimohammadi, A. Akbari, Quadrotors unmanned aerial vehicles: A review., International Journal on Smart Sensing & Intelligent Systems 9 (1) (2016). [Google Scholar]
- N. A. Khofiyah, S. Maret, W. Sutopo, B. D. A. Nugroho, Goldsmith’s commercialization model for feasibility study of technology lithium battery pack drone, in: 2018 5th International Conference on Electric Vehicular Technology (ICEVT), IEEE, pp. 147-151 (2018). [Google Scholar]
- D. Verstraete, K. Lehmkuehler, K. C. Wong, Design of a Fuel Cell Powered Blended Wing Body UAV, in: Volume 1: Advances in Aerospace Technology, ASME, Houston, Texas, USA, p. 621 (Nov. 2012). [CrossRef] [Google Scholar]
- M. Hassanalian, M. Radmanesh, A. Sedaghat, Increasing flight endurance of MAVs using multiple quantum well solar cells, Int. J. Aeronaut. Space Sci 15 pp.212{217 (2014). [CrossRef] [Google Scholar]
- A. Gong, D. Verstraete, Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: Current status and research needs, International Journal of Hydrogen Energy 42 (33) pp. 21311-21333 (Aug. 2017). [CrossRef] [Google Scholar]
- Z. Pan, L. An, C. Wen, Recent advances in fuel cells based propulsion systems for unmanned aerial vehicles, Applied Energy 240 pp. 473-485 (2019). [CrossRef] [Google Scholar]
- J.-J. Hwang, J.-K. Kuo, W. Wu, W.-R. Chang, C.-H. Lin, S.-E. Wang, Lifecycle performance assessment of fuel cell/battery electric vehicles, International Journal of Hydrogen Energy 38 (8) pp. 3433-3446 (2013). [CrossRef] [Google Scholar]
- J. Ruan, P. D. Walker, N. Zhang, J. Wu, An investigation of hybrid energy storage system in multi-speed electric vehicle, Energy 140 pp. 291-306 (2017). [CrossRef] [Google Scholar]
- A. Gong, R. MacNeill, D. Verstraete, J. L. Palmer, Analysis of a FuelCell/Battery/Supercapacitor Hybrid Propulsion System for a UAV using a Hardware-inthe-Loop Flight Simulator, in: 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, American Institute of Aeronautics and Astronautics, Cincinnati, Ohio, (Jul. 2018). [Google Scholar]
- A. Gong, J. L. Palmer, D. Verstraete, Flight test of a fuel-cell/battery/supercapacitor triple hybrid uav propulsion system, in: 31st Congress of the International Council of the Aeronautical Sciences, p. 11, (ICAS 2018). [Google Scholar]
- Jinming Liu, Huei Peng, Modeling and Control of a Power-Split Hybrid Vehicle, IEEE Transactions on Control Systems Technology 16 (6) pp. 1242-1251 (Nov. 2008). [CrossRef] [Google Scholar]
- M. Zandi, A. Payman, J.-P. Martin, S. Pierfederici, B. Davat, F. Meibody-Tabar, Energy Management of a Fuel Cell/Supercapacitor/Battery Power Source for Electric Vehicular Applications, IEEE Transactions on Vehicular Technology 60 (2) pp. 433-443 (Feb. 2011). [CrossRef] [Google Scholar]
- B. Lee, S. Kwon, P. Park, K. Kim, Active power management system for an unmanned aerial vehicle powered by solar cells, a fuel cell, and batteries, IEEE Transactions on Aerospace and Electronic Systems 50 (4) pp. 3167-3177 (Oct. 2014). [CrossRef] [Google Scholar]
- Q. Cai, D. J. L. Brett, D. Browning, N. P. Brandon, A sizing-design methodology for hybrid fuel cell power systems and its application to an unmanned underwater vehicle, Journal of Power Sources 195 (19) pp. 6559-6569 (2010). [CrossRef] [Google Scholar]
- Herinantenaina E. F., Ramanantsihoarana H.N., Rastefano E., « Synthèse de Déploiement du Système d’alimentation embarque dans un minidrone quadrirotor à énergie solaire », MADA ETI, ISSN 2220-0673, Vol.2, pp. 40-56, 2014. [Google Scholar]
- Ashleigh Townsend, Immanuel N. Jiya, Christiaan Martinson, Dmitri Bessarabov, Rupert Gouws, A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements, Heliyon, Volume 6, Issue 11, 2020. [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.