Open Access
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
Article Number 00074
Number of page(s) 9
Published online 17 January 2022
  1. Y. Chen, Energy Harvesting Communications: Principles and Theories, Wiley, 2019. [CrossRef] [Google Scholar]
  2. S.P. Beeby, Z. Cao, A. Almussallam, Kinetic, thermoelectric and solar energy harvesting technologies for smart textiles, Multidiscip. Know-How Smart-Textiles Dev. (2013) 306–328. [Google Scholar]
  3. A. Kansal, J. Hsu, S. Zahedi, M.B. Srivastava, Power management in energy harvesting sensor networks, ACM Trans. Embed. Comput. Syst. 6 (2007) 32--es. [Google Scholar]
  4. N. Dang, E. Bozorgzadeh, N. Venkatasubramanian, Chapter 6 - Energy Harvesting for Sustainable Smart Spaces, in: A. Hurson, A. Memon (Eds.), Elsevier, 2012: pp. 203–251. [Google Scholar]
  5. K.Z. Panatik, K. Kamardin, S.A. Shariff, S.S. Yuhaniz, N.A. Ahmad, O.M. Yusop, S. Ismail, Energy harvesting in wireless sensor networks: A survey, in: 2016 IEEE 3rd Int. Symp. Telecommun. Technol., 2016: pp. 53–58. [CrossRef] [Google Scholar]
  6. J. Singh, R. Kaur, D. Singh, Energy harvesting in wireless sensor networks: A taxonomic survey, Int. J. Energy Res. 45 (2021) 118–140. [Google Scholar]
  7. S. Sudevalayam, P. Kulkarni, Energy Harvesting Sensor Nodes: Survey and Implications, IEEE Commun. Surv. Tutorials. 13 (2011) 443–461. [CrossRef] [Google Scholar]
  8. N. Dang, E. Bozorgzadeh, N. Venkatasubramanian, Energy Harvesting for Sustainable Smart Spaces, Adv. Comput. 87 (2012) 203–251. [Google Scholar]
  9. A. Idrissi, F. Yakine, Multicast routing with quality of service constraints in the ad hoc wireless networks, J. Comput. Sci. (2014). [Google Scholar]
  10. F. Yakine, A. Idrissi, Energy efficient routing with network lifetime in wireless ad-hoc networks, in: Int. Conf. Next Gener. Networks Serv. NGNS, 2014. [Google Scholar]
  11. D.E. Tiliute, Battery Management in Wireless Sensor Networks, Elektron. Ir Elektrotechnika. 76 (2007) 9–12. [Google Scholar]
  12. W.K.G. Seah, Z.A. Eu, H.-P. Tan, Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP) - Survey and challenges, in: 2009 1st Int. Conf. Wirel. Commun. Veh. Technol. Inf. Theory Aerosp. Electron. Syst. Technol., 2009: pp. 1–5. [Google Scholar]
  13. W. Ye, J. Heidemann, D. Estrin, An energyefficient MAC protocol for wireless sensor networks, in: Proceedings.Twenty-First Annu. Jt. Conf. IEEE Comput. Commun. Soc., 2002: pp. 1567–1576 vol.3. [CrossRef] [Google Scholar]
  14. J. Polastre, J. Hill, D. Culler, Versatile Low Power Media Access for Wireless Sensor Networks, in: Proc. 2nd Int. Conf. Embed. Networked Sens. Syst., Association for Computing Machinery, New York, NY, USA, 2004: pp. 95–107. [CrossRef] [Google Scholar]
  15. W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient communication protocol for wireless microsensor networks, in: Syst. Sci. 2000. Proc. 33rd Annu. Hawaii Int. Conf., 2000: pp. 10--pp. [Google Scholar]
  16. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva, Directed Diffusion for Wireless Sensor Networking, IEEE/ACM Trans. Netw. 11 (2003) 2–16. [CrossRef] [Google Scholar]
  17. R.C. Carrano, D. Passos, L.C.S. Magalhaes, C.V.N. Albuquerque, Survey and Taxonomy of Duty Cycling Mechanisms in Wireless Sensor Networks, IEEE Commun. Surv. Tutorials. 16 (2014) 181–194. [CrossRef] [Google Scholar]
  18. Hossam Mahmoud Ahmad, Wireless Sensor Networks Energy Harvesting and Management for Research and Industry, 2020. [Google Scholar]
  19. T. Crossbow, Iris Datasheet, (2007). [Google Scholar]
  20. J.A. Khan, H.K. Qureshi, A. Iqbal, C. Lacatus, Energy management in Wireless Sensor Networks: A survey, Comput. Electr. Eng. 41 (2015) 159–176. [Google Scholar]
  21. I. Crossbow Technology, MICAz Datasheet, (2008) 4–5. [Google Scholar]
  22. Memsic, Telos B datasheet, (2013). [Google Scholar]
  23. P. SunSPOT, SunSpot datasheet, (n.d.). [Google Scholar]
  24. S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, K. Huang, Energy Harvesting Wireless Communications: A Review of Recent Advances, IEEE J. Sel. Areas Commun. 33 (2015) 360–381. [CrossRef] [Google Scholar]
  25. F.K. Shaikh, S. Zeadally, Energy harvesting in wireless sensor networks: A comprehensive review, Renew. Sustain. Energy Rev. 55 (2016) 1041–1054. [CrossRef] [Google Scholar]
  26. D.K. Sah, T. Amgoth, Renewable energy harvesting schemes in wireless sensor networks: A Survey, Inf. Fusion. 63 (2020) 223–247. [CrossRef] [Google Scholar]
  27. F. Li, M. Xiong, L. Wang, H. Peng, J. Hua, X. Liu, A novel energy-balanced routing algorithm in energy harvesting sensor networks, Phys. Commun. 27 (2018) 181–187. [Google Scholar]
  28. Z.A. Eu, H.P. Tan, W.K.G. Seah, Opportunistic routing in wireless sensor networks powered by ambient energy harvesting, Comput. Networks. 54 (2010) 2943–2966. [Google Scholar]
  29. A. Mostafa, K. Hassan, Robust energy harvesting aware clustering with fuzzy petri net reasoning algorithm, in: 2014 IEEE 10th Int. Conf. Wirel. Mob. Comput. Netw. Commun., 2014: pp. 378–383. [Google Scholar]
  30. S.M. Bozorgi, A. Shokouhi Rostami, A.A.R. Hosseinabadi, V.E. Balas, A new clustering protocol for energy harvesting-wireless sensor networks, Comput. Electr. Eng. 64 (2017) 233–247. [Google Scholar]
  31. M.M. Afsar, M. Younis, A load-balanced cross-layer design for energy-harvesting sensor networks, J. Netw. Comput. Appl. 145 (2019) 102390. [Google Scholar]
  32. G. Anastasi, M. Conti, M. Di Francesco, A. Passarella, Energy conservation in wireless sensor networks: A survey, Ad Hoc Networks. 7 (2009) 537–568. [Google Scholar]
  33. H. Wang, J.X. Zhang, F. Li, Worst-case performance guarantees of scheduling algorithms maximizing weighted throughput in energy-harvesting networks, Sustain. Comput. Informatics Syst. 4 (2014) 172–182. [Google Scholar]
  34. D. Zordan, T. Melodia, M. Rossi, On the Design of Temporal Compression Strategies for Energy Harvesting Sensor Networks, IEEE Trans. Wirel. Commun. 15 (2016) 1336–1352. [Google Scholar]
  35. S. Meguerdichian, F. Koushanfar, M. Potkonjak, M.B. Srivastava, Coverage problems in wireless ad-hoc sensor networks, in: Proc. IEEE INFOCOM 2001. Conf. Comput. Commun. Twent. Annu. Jt. Conf. IEEE Comput. Commun. Soc. (Cat. No.01CH37213), 2001: pp. 1380–1387 vol.3. [CrossRef] [Google Scholar]
  36. C. Yang, K.-W. Chin, A novel distributed algorithm for complete targets coverage in energy harvesting wireless sensor networks, in: 2014 IEEE Int. Conf. Commun., 2014: pp. 361–366. [Google Scholar]
  37. C. Yang, K.-W. Chin, Y. Liu, J. Zhang, T. He, Robust Targets Coverage for Energy Harvesting Wireless Sensor Networks, IEEE Trans. Veh. Technol. 68 (2019) 5884–5892. [CrossRef] [Google Scholar]
  38. M. Younis, K. Akkaya, Strategies and techniques for node placement in wireless sensor networks: A survey, Ad Hoc Networks. 6 (2008) 621–655. [CrossRef] [Google Scholar]
  39. S. Misra, N.E. Majd, H. Huang, Approximation Algorithms for Constrained Relay Node Placement in Energy Harvesting Wireless Sensor Networks, IEEE Trans. Comput. 63 (2014) 2933–2947. [CrossRef] [Google Scholar]
  40. N. Mehajabin, M.A. Razzaque, M.M. Hassan, A. Almogren, A. Alamri, Energy-sustainable relay node deployment in wireless sensor networks, Comput. Networks. 104 (2016) 108–121. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.