Open Access
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
Article Number 00075
Number of page(s) 4
Published online 17 January 2022
  1. B. Van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. Journal of computational Physics, vol. 32, no 1, p. 101-136 (1979) [CrossRef] [Google Scholar]
  2. S. Yamamoto Daiguji, H. Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations. Computers & Fluids, vol. 22, no 2-3, p. 259-270 (1993) [CrossRef] [Google Scholar]
  3. P.L. Roe, The use of the Riemann problem in finite difference schemes. In: Seventh International Conference on Numerical Methods in Fluid Dynamics. Springer, Berlin, Heidelberg, 1989. p. 354-359. [CrossRef] [Google Scholar]
  4. K. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems. Journal of Computational Physics, vol. 142, no 1, p. 208-242 (1998) [CrossRef] [Google Scholar]
  5. P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of computational physics, vol. 43, no 2, p. 357-372 (1981) [CrossRef] [Google Scholar]
  6. H. Benakrach, M. Taha-Janan, M.Z. Es-Sadek, simulation of compressible and incompressible flows in the presence of shocks. In: MATEC Web of Conferences. EDP Sciences. p. 07018 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  7. M. Taha Janan and A. El Marjani, “A flow solver for the Euler and Navier-Stokes equations for multi-phase flows with a stiffened gas equation of state,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17, no. 8, pp. 823–835( 2007) [CrossRef] [Google Scholar]
  8. S.K. Godunov, A difference method for the calculation of shock waves. Amer. Math, Soc. Transl, 16(2):389–390, 30 (1960) [Google Scholar]
  9. R. Baraille, J.M. Greenberg, A.Y. Leroux, A. Noussair, Analysis and approximation of conservation laws with source terms. J. Num. Anal., 35(N5): 1980–2007. 49 (1997) [Google Scholar]
  10. B. Van Leer, Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of computational physics, vol. 14, no 4, p. 361-370 (1974) [CrossRef] [Google Scholar]
  11. G. D Van Albada, B. Van Leer, W. Roberts, A comparative study of computational methods in cosmic gas dynamics. In : Upwind and high-resolution schemes. Springer, Berlin, Heidelberg, p. 95-103 (1997) [CrossRef] [Google Scholar]
  12. P.L. Roe, Modelling of Discontinuous Flows. Lectures in Applied Mathematics, vol. 22 (1985) [Google Scholar]
  13. J-P. Cocchi, R. Saurel, A Riemann problem based method for the resolution of compressible multimaterial flows. Journal of Computational Physics, vol. 137, no 2, p. 265-298 (1997) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.