Open Access
Issue
E3S Web Conf.
Volume 337, 2022
International Conference on Climate Nexus Perspectives: Toward Innovative, Resilient and Sustainable Solutions for Natural Resources and Biodiversity Management (I2CNP 2021)
Article Number 05003
Number of page(s) 12
Section Natural and Applied Sciences Based Solutions to Environmental Issues
DOI https://doi.org/10.1051/e3sconf/202233705003
Published online 20 January 2022
  1. H. Kim, E. Park, S. J. Kwon, J. Y. Ohm, H. J. Chang, Renew. Energ 66, 523 (2014). [CrossRef] [Google Scholar]
  2. M. Hosenuzzaman, N.A. Rahim, J. Selvaraj, M. Hasanuzzaman, A. B. M. A. Malek, A. Nahar, Renew. Sust. Energ. Rev 41, 284 (2015). [CrossRef] [Google Scholar]
  3. Z. Lan, J. Li, TELKOMNIKA Indones J. Electr. Eng 12, 4419 (2014). [Google Scholar]
  4. G. Liu, Inter. J. Elect. Power Energ. Syst 56, 168 (2014). [CrossRef] [Google Scholar]
  5. N.S. Lewis, Chem. Rev 115, 12631 (2015). [CrossRef] [PubMed] [Google Scholar]
  6. N. T. R. N. Kumara, A. Lim, C. M. Lim, M. I. Petra, P. Ekanayake, Renew. Sust. Energ. Rev 78, 301 (2017). [CrossRef] [Google Scholar]
  7. H. Belkhanchi, Y. Ziat, M. Hammi, C. Laghlimi, A. Moutcine, A. Benyounes, Optik 229, 166234 (2021). [CrossRef] [Google Scholar]
  8. Z. Zarhri, Y. Ziat, O. El Rhazouani, A. Benyoussef, A. Elkenz, A, J. Phys. Chem. Solids 94, 12 (2016). [CrossRef] [Google Scholar]
  9. Z. Zarhri, Y. Ziat, O. El Rhazouani, A. Slassi, A. Benyoussef, A. El Kenz, J. Magn. Magn. Mater 406, 212 (2016). [CrossRef] [Google Scholar]
  10. H. Belkhanchi, Y. Ziat, M. Hammi, C. Laghlimi, A. Moutcine, A. Benyounes, In E3S Web. Confer 183, 05002 (2020). [CrossRef] [EDP Sciences] [Google Scholar]
  11. Z. Zarhri, M. Ángel Avilés Cardos, Y. Ziat, M. Hammi, O. El Rhazouani, D. Avellaneda Avellaneda, J. Alloys Compd 819, 153010 (2019). [Google Scholar]
  12. A. Benyounes, M. Hammi, Y. Ziat, A. Slassi, N. Zahra, Appl. Phys. A 124, 1 (2018). [CrossRef] [Google Scholar]
  13. A. Slassi, Y. Ziat, Z. Zarhri, M. Abdellaoui, and A. Fakhim Lamrani, Phys. Scr 90, 085801 (2015). [CrossRef] [Google Scholar]
  14. A. Slassi, N. lakouari, Y. Ziat, Z. Zarhri, A. F. Lamrani, E. K. Hlil, A. Benyoussef, Solid State Commun 218, 45 (2015). [CrossRef] [Google Scholar]
  15. M. Hammi, Y. Ziat, O. El Rhazouani, A. Slassi, Optik 131, 399 (2017). [CrossRef] [Google Scholar]
  16. J. Arranz-André, W. J. Blau. Carbon 46, 2067 (2008). [CrossRef] [Google Scholar]
  17. T. Sawatsuk, A. Chindaduang, C. Sae-kung, S. Pratontep, G. Tumcharern, Diam. Relat. Mater 18, 524 (2009). [CrossRef] [Google Scholar]
  18. K. Lee, C. Hu, H. Chen, K. Ho, Sol. Energ0 Mater. Sol. Cells 92, 1628 (2008). [CrossRef] [Google Scholar]
  19. T. Esch, I. Gadaczek, and T. Bredow, Appl. Surf. Sci 288, 275 (2014). [CrossRef] [Google Scholar]
  20. N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B 105, 3023 (2001). [CrossRef] [Google Scholar]
  21. M. Nazeeruddin, E. Baranoff, M. Grätzel, Sol. Energy 85, 1172 (2011). [CrossRef] [Google Scholar]
  22. N. Mufti, I. K. R. Laila, H. Fuad, A. Fuad, Int. Conf. Phys. Instrum. Adv. Mater 853, 1 (2017). [Google Scholar]
  23. R. Bergamasco, F. Da Silva, F. Arakawa, N. Yamaguchi, M. Miranda Reis, C. Tavares, M. T. De Amorim, C. R. Tavares, Chem. Eng. J 174, 102 (2011). [CrossRef] [Google Scholar]
  24. S. Lee and S. Park, J. Ind. Eng. Chem 19, 1761 (2013). [CrossRef] [Google Scholar]
  25. M. Nazeeruddin, E. Baranoff, M. Grätzel, Sol. Energ 85, 1172 (2011). [CrossRef] [Google Scholar]
  26. K. Keis, L. Vayssieres, H. Rensmo, S. E. Lindquist, A. Hagfeldt, J. Electrochem. Soc 148, A149 (2001). [CrossRef] [Google Scholar]
  27. F. A. Carey, R. J. Sundberg, Ad. Org. Chem: Part A: Struct. Mech, 187 (2000). [Google Scholar]
  28. M. Kar, S. Saha, R. Sarkar, S. Pal, P. Sarkar, P, J. Phys. Chem. C 124, 7652 (2020). [CrossRef] [Google Scholar]
  29. Y. Yu, L. Ma, W. Huang, F. Du, J.C. Yu, J. Yu, J. Wang, P.K. Wong, Carbon 43, 670 (2005). [CrossRef] [Google Scholar]
  30. L.P. Zhu, W.Y. Huang, L.L. Ma, S.Y. Fu, Y. Yu, Z.J. Jia, Acta Phys. Chim. Sin 22, 1175 (2006). [CrossRef] [Google Scholar]
  31. L. Spanhel, M. A. Anderson, J. Am. Chem. Soc 113, 2826 (1991). [CrossRef] [Google Scholar]
  32. D. W. Bahneman, C. Kormann, M. R. Hoffmann, J. Phys. Chem 91, 3789 (1987). [CrossRef] [Google Scholar]
  33. Y. Ziat, H. Belkhanchi, M. Hammi, O. Ifguis, Int. J. Photoenergy 2021 (2021). [CrossRef] [Google Scholar]
  34. R. Swanepoel, J. Phys. E Sc. Instru 16, 1214 (1983). [CrossRef] [Google Scholar]
  35. Younes Ziat, A. Abbassi, M. Hammi, O. El Rhazouani, Opt. Quantum Electron 48, 511 (2016). [CrossRef] [Google Scholar]
  36. J. Tauc, A. Menth, Non-Crystalline 8, 569 (1972). [CrossRef] [Google Scholar]
  37. E. Burstein, Amerc. Phys. Society 93, 632 (1954). [Google Scholar]
  38. T. S. Moss, Proc. Phys. Soc 67, 775 (1954). [CrossRef] [Google Scholar]
  39. H. Solar et al., “Electron Affinity and Bandgap Optimization of Zinc Oxide for Improved Performance of ZnO / Si, ” pp. 1–8, (2019). [Google Scholar]
  40. Sundaram, K.B. Work function determination of zinc oxide films. J. Vac. Sci. Technol. A: Vac. Surf. Films, 15, 428–430 (1997). [CrossRef] [Google Scholar]
  41. S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, The Work Function of TiO2, Surfaces 1, 73–89, (2018). [Google Scholar]
  42. Baturay, S.; Ocak, Y.S.; Kaya, D. The effect of Gd doping on the electrical and photoelectrical properties of Gd:ZnO/p-Si heterojunctions. J. Alloys Compd, 645, 29–33 (2015). [CrossRef] [Google Scholar]
  43. Ren, X.; Zi, W.; Ma, Q.; Xiao, F.; Gao, F.; Hu, S.; Zhou, Y.; Liu, S.F. Topology and texture controlled ZnO thin film electrodeposition for superior solar cell efficiency. Sol. Energy Mater. Sol. Cells, 134, 54–59 (2015). [CrossRef] [Google Scholar]
  44. Zeng, X.; Wen, X.; Sun, X.; Liao, W.; Wen, Y. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells. Thin Solid Films, 605, 257–262 (2016). [CrossRef] [Google Scholar]
  45. Das, S.C.; Green, R.J.; Podder, J.; Regier, T.Z.; Chang, G.S.; Moewes, A. Band Gap Tuning in ZnO Through Ni Doping via Spray Pyrolysis. J. Phys. Chem. C, 2013, 12745–12753 (2013). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.