Open Access
E3S Web Conf.
Volume 343, 2022
52nd AiCARR International Conference “HVAC and Health, Comfort, Environment - Equipments and Design for IEQ and Sustainability”
Article Number 03001
Number of page(s) 15
Section HVAC Impact on Comfort and Health of Occupants and Operators
Published online 08 March 2022
  1. Eurostat, Energy data 2020 edition, (2020). [Google Scholar]
  2. L. Morawska, J. Cao, Airborne transmission of SARS-CoV-2: The world should face the reality, Environ. Int., 139, 105730 (2020). [CrossRef] [Google Scholar]
  3. L. Morawska, J.W. Tang, W. Bahnfleth, P.M. Bluyssen, A. Boerstra, G. Buonanno, J. Cao, S. Dancer, A. Floto, F. Franchimon, C. Haworth, J. Hogeling, C. Isaxon, J.L. Jimenez, J. Kurnitski, Y. Li, M. Loomans, G. Marks, L.C. Marr, L. Mazzarella, Melikov, S. Miller, D.K. Milton, W. Nazaroff, P. V. Nielsen, C. Noakes, J. Peccia, X. Querol, C. Sekhar, O. Seppänen, S. ichi Tanabe, R. Tellier, K.W. Tham, Wargocki, A. Wierzbicka, M. Yao, How can airborne transmission of COVID19 indoors be minimised?, Environ. Int., 142 (2020). [Google Scholar]
  4. G. Buonanno, L. Stabile, L. Morawska, Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment, Environ. Int. 141, 105794 (2020). [CrossRef] [Google Scholar]
  5. S.L. Miller, W.W. Nazaroff, J.L. Jimenez, A. Boerstra, G. Buonanno, S.J. Dancer, J. Kurnitski, L.C. Marr, L. Morawska, C. Noakes, Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event, Indoor Air, 31, 314–323 (2021). [CrossRef] [PubMed] [Google Scholar]
  6. A.A. Aliabadi, S.N. Rogak, K.H. Bartlett, S.I. Green, Preventing Airborne Disease Transmission: Review of Methods for Ventilation Design in Health Care Facilities, Adv. Prev. Med., 2011, 1–21 (2011). [CrossRef] [Google Scholar]
  7. J. Wei, Y. Li, Airborne spread of infectious agents in the indoor environment, Am. J. Infect. Control., 44, S102–S108 (2016). [CrossRef] [Google Scholar]
  8. E.Y.C. Shiu, N.H.L. Leung, B.J. Cowling, Controversy around airborne versus droplet transmission of respiratory viruses: implication for infection prevention, Curr. Opin. Infect. Dis., 32, 372–379 (2019). [CrossRef] [PubMed] [Google Scholar]
  9. Z.T. Ai, A.K. Melikov, Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: A review, Indoor Air, 28, 500–524 (2018). [CrossRef] [PubMed] [Google Scholar]
  10. J.M. Villafruela, I. Olmedo, F.A. Berlanga, M. Ruiz de Adana, Assessment of displacement ventilation systems in airborne infection risk in hospital rooms, PLoS One, 14 1–18 (2019). [Google Scholar]
  11. S. Zhu, J. Srebric, J.D. Spengler, P. Demokritou, An advanced numerical model for the assessment of airborne transmission of influenza in bus microenvironments, Build. Environ., 47, 67–75 (2012). [CrossRef] [Google Scholar]
  12. G.N. Sze To, C.Y.H. Chao, Review and comparison between the Wells-Riley and dose-response approaches to risk assessment of infectious respiratory diseases, Indoor Air, 20, 2–16 (2010). [CrossRef] [PubMed] [Google Scholar]
  13. E.A. Nardell, Wells Revisited: Infectious Particles vs. Quanta of Mycobacterium tuberculosis Infection–Don’t Get Them Confused, Mycobact. Dis., 06, 8–11 (2016). [CrossRef] [Google Scholar]
  14. L. Gammaitoni, M.C. Nucci, Using a Mathematical Model to Evaluate the Efficacy of TB Control Measures, Emerg. Infect. Dis., 3, 335–342 (1997). [CrossRef] [Google Scholar]
  15. S.N. Rudnick, D.K. Milton, Risk of indoor airborne infection transmission estimated from carbon dioxide concentration, Indoor Air, 13, 237–245 (2003). [CrossRef] [PubMed] [Google Scholar]
  16. C.J. Noakes, P. Andrew Sleigh, Mathematical models for assessing the role of airflow on the risk of airborne infection in hospital wards, J. R. Soc. Interface., 6, (2009). [CrossRef] [Google Scholar]
  17. F. Haghighat, Y. Li, A.C. Megri, Development and validation of a zonal model POMA, Build. Environ., 36, 1039–1047 (2001). [CrossRef] [Google Scholar]
  18. Y. Lin, POMA -A Zonal Model for Airflow and Temperature Distribution Analysis, Concordia University Montreal, Quebec, Canada, 1999. [Google Scholar]
  19. Y. Lu, J. Dong, J. Liu, Zonal modelling for thermal and energy performance of large space buildings: A review, Renew. Sustain. Energy Rev., 133, 110241 (2020). [CrossRef] [Google Scholar]
  20. G. Buonanno, L. Morawska, L. Stabile, Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications, Environ. Int., 145, 106112 (2020). [CrossRef] [Google Scholar]
  21. European Committee for Standardization-CEN, EN 149:2009, Respiratory protective devices -Filtering half masks to protect against particles -Requirements, testing, marking, CEN, Brussels, Belgium, 2009. [Google Scholar]
  22. European Committee for Standardization-CEN, EN 14683:2019, Medical face masks -Requirements and test methods, CEN, Brussels, Belgium, 2009. [Google Scholar]
  23. A. V. Mueller, M.J. Eden, J.M. Oakes, C. Bellini, L.A. Fernandez, Quantitative Method for Comparative Assessment of Particle Removal Efficiency of Fabric Masks as Alternatives to Standard Surgical Masks for PPE, Matter, 3, 950–962 (2020). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.