Open Access
Issue
E3S Web Conf.
Volume 345, 2022
XXV Biennial Symposium on Measuring Techniques in Turbomachinery (MTT 2020)
Article Number 01002
Number of page(s) 9
Section Instrumentation
DOI https://doi.org/10.1051/e3sconf/202234501002
Published online 29 March 2022
  1. S. Naik, S. Retzko, M. Gritsch, and A. Sedlov, “Impact of Turbulator Design on the Heat Transfer in a High Aspect Ratio Passage of a Turbine Blade,” in ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, Jun. 2014. [Google Scholar]
  2. M. Jaremkiewicz, “Accurate Measurement of Unsteady State Fluid Temperature,” Heat Mass Transfer, vol. 53, no. 3, pp. 887–897, 2016. [Google Scholar]
  3. K. Konopka, “Thermocouple Dynamic Errors Correction for Instantaneous Temperature Measurements in Induction Heating,” in 19th IMEKO TC 4 Symposium and 17th IWADC Workshop. [Google Scholar]
  4. A. Terzis, J. von Wolfersdorf, B. Weigand, and P. Ott, “Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments using the Transient Liquid Crystal Technique,” Measurement Science and Technology, vol. 23, no. 11, 2012. [Google Scholar]
  5. M. Tagawa, K. Kaifuku, T. Houra, Y. Yamagami, and K. Kato, “Response Compensation of fine-wire Thermocouples and its Application to Multidimensional Measurement of a Fluctuating Temperature Field,” Heat Trans. Asian Res., vol. 40, no. 5, pp. 404–418, 2011. [CrossRef] [Google Scholar]
  6. S. Nikonov and K. Velkov, “Accounting for the Inertia of the Thermocouples’ Measurements by Modelling of a NPP Kalinin-3 Transient with the Coupled System Code ATHLET-BIPR-VVER,” in Proceedings of the eighteenth symposium of atomic energy research. [Google Scholar]
  7. K. Farahmand and J. W. Kaufman, “Experimental Measurement of fine Thermocouple Response Time in Air,” Experimental Heat Transfer, vol. 14, no. 2, pp. 107–118, 2001. [CrossRef] [Google Scholar]
  8. S. J. Park and S. T. Ro, “A new Method for measuring Time Constants of a Thermocouple Wire in Varying Flow States,” Experiments in Fluids, vol. 21, no. 5, pp. 380–386, 1996. [CrossRef] [Google Scholar]
  9. P. C. Miles and F. C. Gouldin, “Determination of the Time Constant of Fine-Wire Thermocouples for Compensated Temperature Measurements in Premixed Turbulent Flames,” Combustion Science and Technology, vol. 89, 1-4, pp. 181–199, 1993. [CrossRef] [Google Scholar]
  10. C. Petit, P. Gajan, J. C. Lecordier, and P. Paranthoen, “Frequency Response of fine wire Thermocouple,” J. Phys. E: Sci. Instrum., vol. 15, no. 7, pp. 760–770, 1982. [CrossRef] [Google Scholar]
  11. A. Ballantyne and J. B. Moss, “Fine Wire Thermocouple Measurements of Fluctuating Temperature,” Combustion Science and Technology, vol. 17, 1-2, pp. 63–72, 1977. [CrossRef] [Google Scholar]
  12. G. M. Levin and V. I. Vol'mir, “Methods for Testing Thermal Inertia in Thermocouples and Resistance Thermometers,” Meas Tech, vol. 3, no. 4, pp. 309–313, 1960. [CrossRef] [Google Scholar]
  13. M. D. Scadron and I. Warshasky, “Experimental Determination of Time Constants and Nusselt Numbers for Bare-Wire Thermocouples in High-Velocity Air Streams and Analytic Approximation of Conduction and Radiation Errors,” Technical Report NACA-TN-2599, 1952. [Google Scholar]
  14. Z. Zou, Weiping Yang, Weihao Zhang, Xiaokui Wang, and Jian Zhao, “Numerical Modeling of Steady State Errors for Shielded Thermocouples based on Conjugate Heat Transfer Analysis,” International Journal of Heat and Mass Transfer, vol. 119, pp. 624–639, 2018. [CrossRef] [Google Scholar]
  15. M. Axtmann, J. von Wolfersdorf, and G. Meyer, “Application of the Transient Heat Transfer Measurement Technique in a Low Aspect Ratio Pin Fin Cooling Channel,” in ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, Quebec, Canada, Jun. 2015. [Google Scholar]
  16. Chris J. Kobus, “True Fluid Temperature Reconstruction Compensating for Conduction Error in the Temperature Measurement of Steady Fluid Flows,” Review of Scientific Instruments, vol. 77, no. 3, 2006. [Google Scholar]
  17. R. J. Dickinson, “Thermal Conduction Errors of Manganin-Constantan Thermocouple Arrays,” Phys. Med. Biol., vol. 30, no. 5, pp. 445–453, 1985. [CrossRef] [Google Scholar]
  18. B. S. Singh and A. Dybbs, “Error in Temperature Measurements due to Conduction along the Sensor Leads,” Journal of Heat Transfer, vol. 98, no. 3, pp. 491–495, 1976. [CrossRef] [Google Scholar]
  19. G. J. K. Packer and J. L. B. Gamlen, “Calculation of Temperature Measurement Errors in Thermocouples in Convection Heating Cans,” J Food Science, vol. 39, no. 4, pp. 739–743, 1974. [CrossRef] [Google Scholar]
  20. W. G. Hess, “Thermocouple Conduction Error with Radiation Heat Loss,” Master thesis, Department of Aerospace and Mechanical Engineering, University of Arizona, 1965. [Google Scholar]
  21. L. M. K. Boelter and R. W. Lockhart, Thermocouple Conduction Error observed in Measuring Surface Temperatures: National Advisory Committee for Aeronautics, 1951. [Google Scholar]
  22. S. M. Khine, T. Houra, and M. Tagawa, “Heat-Conduction Error of Temperature Sensors in a Fluid Flow with Nonuniform and Unsteady Temperature Distribution,” The Review of scientific instruments, vol. 84, no. 4, 2013. [Google Scholar]
  23. Chris J. Kobus, “True-Temperature Reconstruction from Combined Conduction and Transient Thermocouple Temperature Lag Errors in Single-Phase Convection,” in ASME 2013 Heat Transfer Summer Conference, 10.1115/HT2013-17094. [Google Scholar]
  24. T. Krille, M. Diehl, R. Poser, and J. von Wolfersdorf, “Conduction and Inertia Correction for Transient Thermocouple Measurements. Part II: Experimental Validation and Application,” in The 17th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines. [Google Scholar]
  25. H. D. Baehr and K. Stephan, Wärme- und Stoffübertragung, 9th ed.: Springer-Verlag Berlin Heidelberg, 2016. [Google Scholar]
  26. C.-D. Munz and T. Westermann, Numerische Behandlung gewöhnlicher und partieller Differenzialgleichungen: Ein interaktives Lehrbuch für Ingenieure, 3rd ed. Berlin: Springer Vieweg, 2012. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.