Open Access
Issue |
E3S Web Conf.
Volume 345, 2022
XXV Biennial Symposium on Measuring Techniques in Turbomachinery (MTT 2020)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 9 | |
Section | Instrumentation | |
DOI | https://doi.org/10.1051/e3sconf/202234501003 | |
Published online | 29 March 2022 |
- F. Seibold, A. Schwab, V. Dubois, R. Poser, B. Weigand, and J. von Wolfersdorf, “Conduction and Inertia Correction for Transient Thermocouple Measurements. Part I: Analytical and Numerical Modelling,” The 17th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines, 2020. [Google Scholar]
- A. Terzis, J. von Wolfersdorf, B. Weigand, and P. Ott, “Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique,” Meas. Sci. Technol., 2012. [Google Scholar]
- F. Bernhard, Handbuch der Technischen Temperaturmessung, 2nd ed. Berlin: Springer Vieweg, 2014. [Google Scholar]
- M. Axtmann, J. von Wolfersdorf, and G. Meyer, “Application of the Transient Heat Transfer Measurement Technique in a Low Aspect Ratio Pin Fin Cooling Channel,” Journal of Turbomachinery, 2015. [Google Scholar]
- T. Krille, S. Retzko, R. Poser, and J. von Wolfersdorf, “Heat Transfer Measurements Using Multiple Thermochromic Liquid Crystals in Symmetric Cooling Channels,” Accepted ASME Paper GT2020-16271, 2020. [Google Scholar]
- M. D. Scadron and I. Warshawsky, “Experimental Determination of Time Constants and Nusselt Numbers for Bare- Wire Thermocouples in High-Velocity Air Streams and Analytic Approximation of Conduction and Radiation Errors,” NACA TN 2599, 1952. [Google Scholar]
- R. J. Dickinson, “Thermal Conduction Errors of Manganin-Constantan Thermocouple Arrays,” Phys. Med. Biol., 1985. [Google Scholar]
- M. Tarnopolsky and I. Seginer, “Leaf Temperature Error from Heat Conduction Along Thermocouple Wires,” Agricultural and forest meteorology, 1999. [Google Scholar]
- K. Farahmand and J. W. Kaufman, “Experimental Measurement of Fine Thermocouple Response Time in Air,” Experimental Heat Transfer, 2001. [Google Scholar]
- B. W. Asay, S. F. Son, P. M. Dickson, L. B. Smilowitz, and B. F. Henson, “An Investigation of the Dynamic Response of Thermocouples in Inert and Reacting Condensed Phase Energetic Materials,” Propellants, Explosives, Pyrotechnics, 2005. [Google Scholar]
- B. Sarnes and E. Schrüfer, “Determination of the Time Behavior of Thermocouples for Sensor Speedup and Medium Supervision,” Proc. Estonian Acad. Sci. Eng, 2007. [Google Scholar]
- L. Villafañe and G. Paniagua, “Aero-thermal Analysis of Shielded Fine Wire Thermocouple Probes,” International Journal of Thermal Sciences, 2013. [Google Scholar]
- M. A. Kazemi, D. S. Nobes, and J. A. W. Elliott, “Effect of the Thermocouple on Measuring the Temperature Discontinuity at a Liquid-Vapor Interface,” Langmuir, 2017. [Google Scholar]
- Special Metals Corporation, INCONEL® Alloy 600. [Online]. Available: https://www.specialmetals.com/tech-center/alloys.html [Google Scholar]
- E. D. Palik, Ed., Handbook of Optical Constants of Solids. Boston: Acad. Press, 2003. [Google Scholar]
- S. Andersson and G. Bäckström, “Techniques for Determining Thermal Conductivity and Heat Capacity Under Hydrostatic Pressure,” Review of Scientific Instruments, 1986. [Google Scholar]
- H. D. Baehr and K. Stephan, Wärme- und Stoffübertragung, 8th ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.