Open Access
E3S Web Conf.
Volume 345, 2022
XXV Biennial Symposium on Measuring Techniques in Turbomachinery (MTT 2020)
Article Number 01005
Number of page(s) 10
Section Instrumentation
Published online 29 March 2022
  1. K. Tanaka, A. I. Kalfas, H. P. Hodson, Development of Single Sensor Fast Response Pressure Probe, The XVth Bi-annual Symposium on Measuring Techniques in Turbomachinery Transonic and Supersonic Flow in Cascades and Turbomachines, 21-22 September, Florence, Italy. [Google Scholar]
  2. V. Ramakrishnan, O. Rediniotis, Development of a 12-Hole Omnidirectional Flow-Velocity Measurement Probe, AIAA J., 45, No. 6, pp. 1430-1432 (2007). [CrossRef] [Google Scholar]
  3. H. Wang, X. Chen, W. Zhao, Development of a 17-Hole Omnidirectional Pressure Probe, AIAA J., 50, No. 6, pp. 1426-1430 (2012). [CrossRef] [Google Scholar]
  4. A. Doukelis, K. Mathioudakis, Turbomachinery Flow Measurements Using Long-Nose Probes, GT2003-38488, Proceedings of ASME Turbo Expo, Atlanta, Georgia, USA (June 16-19, 2003) [Google Scholar]
  5. R. G. Dominy, H. P. Hodson, An investigation of factors influencing the calibration of five-hole probes for three-dimensional flow measurements, J. Turbomach. Trans. ASME, 115, pp. 513-519 (July 1993). [CrossRef] [Google Scholar]
  6. S. W. Lee, S. B. Jun, Effects of Reynolds Number on the Non-Nulling Calibration of a Cone-Type Five-Hole Probe, GT2003-38147, Proceedings of 2003 ASME TURBO EXPO: Power for Land, Sea, & Air, Atlanta, Georgia, USA (June 16-19, 2003). [Google Scholar]
  7. P. C. Ivey, P. D. Smout, Wall Proximity Effects in Pneumatic Measurement of Turbomachinery Flows, 94-GT-116 (1994). [Google Scholar]
  8. S. Coldrick, P. C. Ivey, R. Wells, Considerations for Using 3D Pneumatic Probes in High Speed Axial Compressors, GT2002-30045, Proceedings of ASME Turbo Expo 2002, Amsterdam, The Netherlands (June 3-6, 2002). [Google Scholar]
  9. A. C. Chasoglou, E. Boufidi, P. Tsirikoglou, A.I. Kalfas, Novel Multi-hole Pneumatic Probe Geometries for Turbomachinery Application, The XXII Symposium on Measuring Techniques in Turbomachinery Transonic and Supersonic Flow in Cascades and Turbomachines, France, Lyon (September 4-5) [Google Scholar]
  10. A. L. Treaster, A. M. Yocum, The calibration and application of five-hole probes, ISA Transactions, 18, No. 3 (1979). [Google Scholar]
  11. G. L. Morrison, M. T. Schobeiri, K. R. Pappu, Five-hole pressure probe analysis technique, Flow Meas. Instrum., 9, pp. 153–158 (June 1998). [CrossRef] [Google Scholar]
  12. A. J. Pisasale, N. A. Ahmed, A novel method for extending the calibration range of five-hole probe for highly three-dimensional flows, Flow Meas. Instrum. 13 (2002), 23–30 [CrossRef] [Google Scholar]
  13. A. L. Treaster, H. E. Houtz, Fabricating and calibrating five-hole probes, Proceedings of the Fluid Measurements and Instrumentation Forum. In: Bajura RA, Billet ML, editors. ASME-Fluids Engineering Division, AIAAiASME 4th Fluid Mechanics, Plasma Dynamics and Lasers Conference, 34, Atlanta (1986). [Google Scholar]
  14. P. H. Richards, C. G. Johnson, Development of secondary flows in the stator of a model turbine, Exp Fluids 1988, 6, 2–10 (1988). [CrossRef] [Google Scholar]
  15. R. Allen, L. Traub, E. S. Johansen, O. K. Rediniotis, T. Tsao, A MEMS-Based 5-Sensor Probe, AIAA-2000-0252. Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, Reno, NV (January 10–13 2000). [Google Scholar]
  16. D. P. Georgiou, K. F. Milidonis, Fabrication and calibration of a sub-miniature 5-hole probe with embedded pressure sensors for use in extremely confined and complex flow areas in turbomachinery research facilities, Meas. Instrum., 39, pp.54–63 (2014) [CrossRef] [Google Scholar]
  17. D. Telionis, O. Rediniotis, “Recent Developments in Multi-Hole Probe (MHP) Technology”, Proceedings of COBEM 2009, 20th International Congress of Mechanical Engineering, RS, Brazil (November 15–20 2009). [Google Scholar]
  18. I. Jarallah, V. P. Kanjirakkad, Improving the fidelity of aerodynamic probes using additive manufacturing, Rapid Prototyp. J., 22 Iss: 1, pp. 200–206 [Google Scholar]
  19. S. V. Vouros, Experimental Optimization of a Contra – Rotating Propelling Unit, Aristotle University of Thessaloniki, Faculty of Engineering, Department of Mechanical Engineering (2015). [Google Scholar]
  20. P. M. Ligrani, B. A. Singer, L. R. Baun, Miniature five-hole pressure measurement of three mean velocity components in low-speed flows, J. Phys. E. 1989, 22, 868–76 (1989). [CrossRef] [Google Scholar]
  21. S. V. Vouros, A. C. Chasoglou, T. G. Efstathiadis, A. I. Kalfas, Effects of Rotor-Speed-Ratio and Crosswind inlet distortion on Off-Design Performance of Contra-Rotating Propelling, GT2016-57273, Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition GT2016, Seoul, South Korea (June 13 – 17 2016). [Google Scholar]
  22. J. Andreopoulos, W. Rodi, Experimental investigation of jets in a crossflow, J. Fluid Mech., 138, pp. 93-127(1984) [CrossRef] [Google Scholar]
  23. L. Cortelezzi, A. R. Karagozian, On the formation of the counter-rotating vortex pair in transverse jets, J. Fluid Mech., Cambridge University Press, 446, pp. 347-373 (2001). [CrossRef] [Google Scholar]
  24. A. Terzis, Ch. Kazakos, A. Kalfas, P. Zachos, P. Ott, “Swirl jets in Crossflow at Low Velocity Ratios”, J. Mech. Eng. Autom. 2, pp. 256-266 (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.