Open Access
Issue
E3S Web Conf.
Volume 345, 2022
XXV Biennial Symposium on Measuring Techniques in Turbomachinery (MTT 2020)
Article Number 02007
Number of page(s) 9
Section Methods
DOI https://doi.org/10.1051/e3sconf/202234502007
Published online 29 March 2022
  1. H. Schlichting, Boundary Layer Theory, 6th Edition, McGraw-Hill, New York (1968) [Google Scholar]
  2. F. M. White, Viscous Fluid Flow. 3rd Edition, McGraw-Hill, New York (2006) [Google Scholar]
  3. E.G. Hauptmann, The influence of temperature dependent viscosity on laminar boundary layer stability. Int. J. Heat Mass Transf., 11, 1049–1052 (1968) [CrossRef] [Google Scholar]
  4. A. R. Wazzan, T. Okamura, A. M. O. Smith, The Stability of Water Flow Over Heated and Cooled Flat Plates, ASME J. Heat Transf., 90, 109–114 (1968) [CrossRef] [Google Scholar]
  5. H. Herwig, J. Severin, The effect of heat transfer on flow stability, In: A. Kluwick (ed.), Recent Advances in Boundary Layer Theory. Springer, Wien (1998) [Google Scholar]
  6. A. R. Wazzan, G. Keltner, T. Okamura, A. M. O. Smith, Spatial Stability of Stagnation Water Boundary Layer with Heat Transfer, Phys. Fluids, 15, 2114–2118 (1972) [CrossRef] [Google Scholar]
  7. H. R. Lee, T. S. Chen, B. F. Armaly, Non-parallel thermal instability of forced convection flow over a heated, non-isothermal horizontal flat plate, Int. J. Heat Mass Transf., 33, 2019–2028 (1990) [CrossRef] [Google Scholar]
  8. A. Al Musleh, A. Frendi, On the Effects of a Flexible Structure on Boundary Layer Stability and Transition, ASME J. Fluids Eng., 133, 071103 (2011) [CrossRef] [Google Scholar]
  9. H. Herwig, P. Schäfer, Influence of variable properties on the stability of two-dimensional boundary layers, J. Fluid Mech., 243, 1–14 (1992) [CrossRef] [Google Scholar]
  10. H. Herwig, P. Schäfer, The effect of heat transfer on the stability of laminar boundary layers, Int. J. Heat Mass Transf., 38, 1855–1863 (1995) [Google Scholar]
  11. H. W. Liepmann, G. H. Fila, Investigations of effect of surface temperature and single roughness elements on boundary layer transition, NACA Report No. 890 (1947) [Google Scholar]
  12. A. J. Strazisar, E. Reshotko, J. M. Prahl, Experimental study of the stability of heated laminar boundary layers in water, J. Fluid Mech., 83, 225–247 (1977) [CrossRef] [Google Scholar]
  13. G. C. Lauchle, G. B. Gurney, Laminar boundary layer transition on a heated underwater body, J. Fluid Mech., 144, 79–101 (1984) [CrossRef] [Google Scholar]
  14. S. B. Harrison, D. J. Mee, T. V. Jones, Experiment on the influence of heating on boundary-layer transition in favourable pressure gradients, In: Proceedings Eurotherm Seminar No. 25, Pay, France (1991) [Google Scholar]
  15. H. A. Jasmine, J. S. B. Gajjar, Absolute and convective instabilities in the incompressible boundary layer on a rotating disk with temperature-dependent viscosity, Int. J. Heat Mass Transf., 48, 1022-1037 (2005) [CrossRef] [Google Scholar]
  16. H. L. Reed, W. S. Saric, Stability of three-dimensional boundary layers, Ann. Rev. Fluid Mech., 21, 235–284 (1989) [CrossRef] [Google Scholar]
  17. W. S. Saric, H. L. Reed, E. B. White, Stability and transition of three-dimensional boundary layers, Ann. Rev. Fluid Mech., 35, 413–440 (2003) [CrossRef] [Google Scholar]
  18. R. Kobayashi, Review: Laminar-to-Turbulent Transition of Three-Dimensional Boundary Layers on Rotating Bodies, ASME J. Fluids Eng., 116, 200–211 (1994) [CrossRef] [Google Scholar]
  19. R. L. Lingwood, Absolute instability of the boundary layer on a rotating disk, J. Fluid Mech., 299, 17–33 (1995) [CrossRef] [Google Scholar]
  20. I. V. Shevchuk, Convective Heat and Mass Transfer in Rotating Disk Systems, Springer, Berlin (2009) [Google Scholar]
  21. T. Astarita, G. Cardone, G. M. Carlomagno, Spiral vortices detection on a rotating disk, In: Proceedings ICAS Congress, Toronto, Canada, 364.1-364.8 (2002) [Google Scholar]
  22. N. Gregory, J. T. Stuart, W. S. Walker, On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk, Phil. Trans. Royal Soc. London, 248, 155–199 (1956) [Google Scholar]
  23. R. Kobayashi, Y. Kohama, Ch. Takamadate, Spiral Vortices in Boundary Layer Transition Regime on a Rotating Disk, Acta Mechanica, 35, 71–82 (1980) [CrossRef] [Google Scholar]
  24. C. Helcig, S. aus der Wiesche, I. V. Shevchuk, Prandtl Number Effect on the Laminar Convective Heat Transfer From a Rotating Disk, ASME J. Heat Transf., 139, 101702 (10 pages) (2017) [CrossRef] [Google Scholar]
  25. L. D. Landau, E. M. Lifshitz, Fluid Mechanics. 2nd Edition, Pergamon Press, Oxford (1987) [Google Scholar]
  26. E. Bilgen, Stability of Three-Dimensional Boundary layer of Dilute Polymer Solutions, ASME J. Basic Eng., March, 85 –87 (1971) [Google Scholar]
  27. C. J. Elkins, Heat Transfer in the Rotating Disk Boundary Layer, Dissertation, Department of Mechanical Engineering, Stanford University (1997) [Google Scholar]
  28. W. Linke, Über den Strömungswiderstand einer beheizten ebenen Platte, Luftfahrt-Forschung, Band 19, 157−160 (in German) (1942) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.