Open Access
Issue
E3S Web Conf.
Volume 349, 2022
10th International Conference on Life Cycle Management (LCM 2021)
Article Number 03001
Number of page(s) 7
Section Sustainability and Impact Assessment
DOI https://doi.org/10.1051/e3sconf/202234903001
Published online 20 May 2022
  1. Gładysz, P. and A. Ziębik, Life cycle assessment of an integrated oxy-fuel combustion power plant with CO2 capture, transport and storage–Poland case study. Energy, 2015.92:p.328340. [Google Scholar]
  2. Koornneef, J., et al., Life cycle assessment of a pulverized coal power plant with postcombustion capture, transport and storage of CO2. Int.J.of GHG Control, 2008. 2(4): p. 448-467. [Google Scholar]
  3. Liang, X., et al., Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China. Journal of Cleaner Production, 2013. 39: p. 24-31. [CrossRef] [Google Scholar]
  4. Markewitz, P., et al., Environmental impacts of a German CCS strategy. Energy Procedia, 2009. 1(1): p. 3763-3770. [CrossRef] [Google Scholar]
  5. Modahl, I.S., et al., Life cycle assessment of gas power with CCS a study showing the environmental benefits of system integration. Energy Procedia, 2011.4: p. 2470-2477. [CrossRef] [Google Scholar]
  6. Nie, Z., A. Korre, and S. Durucan, Life cycle modelling and comparative assessment of the environmental impacts of oxy-fuel and post-combustion CO2 capture, transport and injection processes. Energy Procedia, 2011. 4: p. 2510-2517. [CrossRef] [Google Scholar]
  7. Odeh, N.A. and T.T. Cockerill, Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage. Energy Policy, 2008. 36(1): p. 367-380. [CrossRef] [Google Scholar]
  8. Pehnt, M. and J. Henkel, Life cycle assessment of carbon dioxide capture and storage from lignite power plants. International Journal of Greenhouse Gas Control, 2009. 3(1): p. 49-66. [CrossRef] [Google Scholar]
  9. Petrescu, L., et al., Life Cycle Assessment for supercritical pulverized coal power plants with post-combustion carbon capture and storage. J. of Cleaner Prod, 2017. 157: p. 10-21. [CrossRef] [Google Scholar]
  10. Singh, B., A.H. Strømman, and E.G. Hertwich, Comparative impact assessment of CCS portfolio: Life cycle perspective. Energy Procedia, 2011. 4: p. 2486-2493. [CrossRef] [Google Scholar]
  11. Singh, B., A.H. Strømman, and E.G. Hertwich, Comparative life cycle environmental assessment of CCS technologies. Int. J. of Greenhouse Gas Control, 2011. 5(4): p. 911-921. [CrossRef] [Google Scholar]
  12. Veltman, K., B. Singh, and E.G. Hertwich, Human and Environmental Impact Assessment of Postcombustion CO2 Capture Focusing on Emissions from Amine-Based Scrubbing Solvents to Air. Environmental Science & Technology, 2010. 44(4): p. 1496-1502. [CrossRef] [PubMed] [Google Scholar]
  13. Viebahn, P., et al., Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in Germany. Int. Journal of Greenhouse Gas Control, 2007. 1(1): p. 121-133. [CrossRef] [Google Scholar]
  14. Bouvart, F. and A. Prieur, Comparison of life cycle GHG emissions and energy consumption of combined electricity and H2 production pathways with CCS: Selection of technologies with natural gas, coal and lignite as fuel for the European HYPOGEN Programme. Energy Procedia, 2009. 1(1): p. 3779-3786. [CrossRef] [Google Scholar]
  15. Verma, A. and A. Kumar, Life cycle assessment of hydrogen production from underground coal gasification. Applied Energy, 2015. 147: p. 556-568. [CrossRef] [Google Scholar]
  16. García-Gusano, D., et al., Life Cycle Assessment of applying CO2 post-combustion capture to the Spanish cement production. Journal of Cleaner Production, 2015. 104: p. 328-338. [CrossRef] [Google Scholar]
  17. Volkart, K., C. Bauer, and C. Boulet, Life cycle assessment of carbon capture and storage in power generation and industry in Europe. Int. J. of GHG Control, 2013. 16: p. 91-106. [Google Scholar]
  18. Cuéllar-Franca, R.M. and A. Azapagic, Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization, 2015. 9: p. 82-102. [CrossRef] [Google Scholar]
  19. Zimmermann, A., et al., Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization. 2018. [CrossRef] [Google Scholar]
  20. von der Assen, N., J. Jung, and A. Bardow, Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy & Env. Science, 2013. 6(9): p. 2721-2734. [CrossRef] [Google Scholar]
  21. ISO, ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines. 2006: Brussels, Belgium. [Google Scholar]
  22. ISO, ISO 14048:2006 Environmental management -Life cycle assessment -Data documentation format. 2006, ISO: Brussels, Belgium. [Google Scholar]
  23. Raadal, H.L. and I.S. Modahl, Life Cycle Assessment of CCS (carbon capture and storage) and CCU (carbon capture and utilization). 2021 NORSUS [Google Scholar]
  24. Silva, M. and H.L. Raadal, Life cycle GHG emissions of renewable and nonrenewable electricity generation technologies. 2019, Ostfold Research. [Google Scholar]
  25. Abanades, J.C., et al., On the climate change mitigation potential of CO2 conversion to fuels. Energy & Environmental Science, 2017. 10(12): p. 2491-2499. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.