Open Access
E3S Web Conf.
Volume 349, 2022
10th International Conference on Life Cycle Management (LCM 2021)
Article Number 04008
Number of page(s) 7
Section Construction and Renovation of Buildings
Published online 20 May 2022
  1. Buyle, M., et al., The Future of Ex-Ante LCA? Lessons Learned and Practical Recommendations. Sustainability, 2019. 11(19): p. 5456. [CrossRef] [Google Scholar]
  2. Maes, B., et al., Consequential ex-ante life cycle assessment on clinker production in the EU: How will the future influence its environmental impact? Journal of Cleaner Production, 2021. 315: p. 128081. [CrossRef] [Google Scholar]
  3. Maes, B., et al., Enhanced fly ash use in concrete: Ex-ante LCA on an emerging electro-mass separation technology. Cleaner Engineering and Technology, 2021. [Google Scholar]
  4. Snellings, R., et al., Pozzolanic reactivity of size-classified siliceous fly ashes. 2019. [Google Scholar]
  5. Damineli, B.L., R.G. Pileggi, and V.M. John, 2 Lower binder intensity eco-efficient concretes, in Eco-Efficient Concrete, 2013, Woodhead Publishing. p. 26-44. [CrossRef] [Google Scholar]
  6. Stengel, T. and P. Schießl, 22 Life cycle assessment (LCA) of ultra high performance concrete (UHPC) structures, in Eco-efficient Construction and Building Materials, 2014, Woodhead Publishing. p. 528-564. [CrossRef] [Google Scholar]
  7. Larsen, I., et al., Determining the Environmental Benefits of Ultra High Performance Concrete as a Bridge Construction Material. IOP Conference Series: Materials Science and Engineering, 2017. 245: p. 052096. [CrossRef] [Google Scholar]
  8. Daigle, L. and Z. Lounis, Life cycle cost analysis of high performance concrete bridges considering environmental impacts. 2006. [Google Scholar]
  9. Ekvall, T. and B.P. Weidema, System boundaries and input data in consequential life cycle inventory analysis. The International Journal of Life Cycle Assessment, 2004. 9(3): p. 161-171. [CrossRef] [Google Scholar]
  10. Huijbregts, M.A.J., et al., ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 2017. 22(2): p. 138-147. [CrossRef] [Google Scholar]
  11. CLIMACT, Net zero by 2050: from whether to how. 2018, European Climate Foundation. [Google Scholar]
  12. Material Economics, Industrial Transformation 2050 Pathways to Net-Zero Emissions from EU Heavy Industry. 2019. [Google Scholar]
  13. Máté, M.L.W.T.N.F.R., The POTEnCIA Central scenario: an EU energy outlook to 2050. 2019: Luxembourg. [Google Scholar]
  14. Global Energy Monitor, Global Coal Plant Tracker. [Google Scholar]
  15. CarbonBrief, Global coal power. p. [Google Scholar]
  16. International Energy Agency, World Energy Model Documentation 2020 version. 2021, IEA. [Google Scholar]
  17. Department of Energy & Climate Change, et al., The Global Calculator. 2015. [Google Scholar]
  18. Climate Analytics, 1.5°C National Pathways Explorer. 2020. p. [Google Scholar]
  19. Riahi, K., et al., The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 2017. 42: p. 153-168. [CrossRef] [Google Scholar]
  20. van Vuuren, D.P., et al., The representative concentration pathways: an overview. Climatic Change, 2011. 109(1): p. 5. [CrossRef] [Google Scholar]
  21. Mendoza Beltran, A., et al., When the Background Matters: Using Scenarios from Integrated Assessment Models in Prospective Life Cycle Assessment. Journal of Industrial Ecology, 2020. 24(1): p. 64-79. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.