Open Access
E3S Web Conf.
Volume 350, 2022
International Conference on Environment, Renewable Energy and Green Chemical Engineering (EREGCE 2022)
Article Number 01017
Number of page(s) 7
Section Green Chemical Engineering
Published online 09 May 2022
  1. Q.H. Feng, R.M. Chen, Z.M. Shi, et al. Response of Rumex dentatus foliar nitrogen and its allocation to altitudinal gradients along Balang Mountain, Sichuan, China. Chin. J. Plant Ecol., 37(7) 591-600 (2013) [CrossRef] [Google Scholar]
  2. S. Yan, L. Zhang, Y.S. Jing, et al. Variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen concentration. Chin. J. Plant Ecol., 38(6) 640-652 (2014) [CrossRef] [Google Scholar]
  3. A. Boonman, N.P.R. Anten, T.A. Dueck, et al. Functional significance of shade induced leaf senescence: an experimental test using transgenic tobacco [J]. Am. Nat., 168(5) 597–607 (2006) [CrossRef] [PubMed] [Google Scholar]
  4. R.E. McMurtrie, R.C. Dewar, Leaf-trait variation explained by the hypothesis that plants maximize their canopy carbon export over the lifespan of leaves. Tree Physiol., 31(9) 1007–1023 (2011) [CrossRef] [PubMed] [Google Scholar]
  5. U. Niinemets, F. Valladares, Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints Plant Biol., 6(3) 254–268 (2004) [Google Scholar]
  6. S.V. Archontoulis, J. Vosa, X. Yina, et al. Temporal dynamics of light and nitrogen vertical distributions in canopies of sunflower, kenaf and cynara Field Crops Res., 122(3) 186-198 (2011) [Google Scholar]
  7. M.S. Peltoniemi, R.A. Duursma, B.E. Medlyn, Cooptimal distribution of leaf nitrogen and hydraulic conductance in plant canopies Tree Physiol., 32(5) 510-519 (2012) [Google Scholar]
  8. G.S. Wen, L.Y. Zhang, R.M. Zhang, et al. Temporal and spatial dynamics of carbon fixation by Moso bamboo (Phyllostachys pubescens) in subtropical China Bot. Rev., 77(3) 271-277 (2011) [Google Scholar]
  9. Y.Q. Ying, J. Guo, J.F. Wei, et al. Effects of drought stress on physiological characteristics of Phyllostachys edulis seedlings Chin. J. Plant Ecol., 30(2) 262-266 (2011) [Google Scholar]
  10. J.L. Yuan, G.S. Wen, M.R. Zhang, et al. Water potential with Phyllostachys edulis in its fast-growth period J. Zhejiang A&F University, 32(5) 722-728 (2015) [Google Scholar]
  11. Y.H. Cao, B.Z. Zhou, X.M. Wang, et al. Effects of Canopy Height on Photosynthetic Physiology Characteristics of Phyllostachys pubescens Leaves Acta bota. boreali-occidentalia sin, 36 (11) 22562266 (2016) [Google Scholar]
  12. Z.M. Shi, J.C. Tang, R.M. Chen, et al. A review of nitrogen allocation in leaves and factors in its effects Acta ecol. Sin., 35(18) 5909-5919 (2015) [Google Scholar]
  13. X.B. Chen, S.J. Han, Z.H. Zhang, et al. Nutrient dynamics in Quercus mongolica leaves at different canopy positions Chin. J. Applied Ecol., 22(9) 22722278 (2011) [Google Scholar]
  14. J.X. Tian, L.P. Wei, N.P. He, et al. Vertical variation of leaf functional traits in temperate forest canopies in China Acta ecol. Sin., 38(23) 8383-8391 (2018) [Google Scholar]
  15. J.C. Tang, Z.M. Shi, D. Luo, et al. Photosynthetic nitrogen-use efficiency of Manglietia glauca seedling leaves under different shading levels Acta ecol. Sin., (22) 122-131 (2017) [Google Scholar]
  16. S. Delagrange, Lightand seasonal-induced plasticity in leaf morphology, N partitioning and photosynthetic capacity of two temperate deciduous species Environ. & Exp. Bot., 70(1) 1-10 (2011) [CrossRef] [Google Scholar]
  17. C. Field, Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program Oecologia, 56(2-3) 341–347 (1983) [Google Scholar]
  18. T. Hirose, M.J.A. Werger, Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy Oecologia, 72(4):520-526 (1987). [Google Scholar]
  19. L. Hallik, Ü. Niinemets, O. Kull, Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field Plant Biol., 14(1) 88-99 (2012) [Google Scholar]
  20. X.P. Gu, X.L. Wu, Y.D. Wang, Study on diagnosis of nitrogen nutrition in Phyllostachys pubescens J. Zhejiang For. Sci. Techn., 24(2) 1-4 (2004) [Google Scholar]
  21. P.J. Gao, Y.H. Qiu, Z.Q. Zhou, et al. Productivity and photosynthetic ability of Phyllostachys edulis with nitrogen fertilization J. Zhejiang A&F University, 31(5) 697-703 (2014) [Google Scholar]
  22. G.L. Liu, S.H. Fan, B.H. Guo, et al. The Carbon, Nitrogen and Phosphorus Contents of Phyllostachys edulis with Different Ages Chin. J. Trop. Crops, 37(2) 279-285 (2016) [Google Scholar]
  23. K.F. Cao, S.J. Yang, Y.J. Zhang, et al. The maximum height of grasses is determined by roots Ecol. Lett., 15(7) 1–7 (2012) [Google Scholar]
  24. H. Komatsu, Y. Onozawa, T. Kume, et al. Canopy conductance for a Moso bamboo (Phyllostachys pubescens) forest in western Japan. Agric. For. Meteorol., 156 111-120.doi:10.1016/j.agrformet.2012.01.004 (2012) [CrossRef] [Google Scholar]
  25. Y.H. Cao, B.Z. Zhou, X.M. Wang, et al. The photosynthetic characteristics of Moso bamboo (Phyllostachys pubescens) for different canopy leaves Adv. Mat. Res., 726-731 4274-4279 (2013) [Google Scholar]
  26. M.Y. Du, S.H. Fan, G.L. Liu, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus in Phyllostachys edulis forests of China. Chin. J. Plant Ecol., 40(8) 760-774 (2016) [CrossRef] [Google Scholar]
  27. S.M. Chen, T.T. Hu, L.H. Luo, et al. Rapid estimation of leaf nitrogen content in apple-trees based on canopy hyperspectral reflectance using multivariate methods. Infrared Phys. Techn., 111, 103542–. doi:10.1016/j.infrared.2020.103542 (2020) [CrossRef] [Google Scholar]
  28. D.L. Jiang, B.L. Yang, X.L. Cheng, et al. The stoichiometry of leaf nitrogen and phosphorus resorption in plantation forests. For.Ecol.Manag., 483:118743. doi:10.1016/j.foreco.2020.118743. (2020) [Google Scholar]
  29. B.H. Guo, G.L. Liu, S.H. Fan, et al. Distribution patterns and stoichiometry characteristics of C, N, P in Phyllostachys edulis forests of different productivity levels[J]. Scientia Silvae Sinicae, 50(6) 1-9 (2014) [Google Scholar]
  30. S. Manzoni, G. Vico, A. Porporato, et al. Biological constraints on water transport in the soil-plantatmosphere system Adv.Water Resour., 51 292-304 (2013) [Google Scholar]
  31. D.X. Gao, W. Zhang, C.J. Ren, et al. Ecological stoichiometry characteristics of soil and leaves during the recovery process of typical vegetation on the Loess Plateau Acta ecol. Sin., 39(10) 3622-3630 (2019) [Google Scholar]
  32. X. Fang, J. Wang, B. Wang, et al. Effects of simulated soil warming and precipitation exclusion on N and P metabolisms in Cunninghamia lanceolate[J]. Acta ecol. Sin., 39(10) 3526-3536 (2019) [Google Scholar]
  33. F. Wang, Q.J. He, G.S. Zhou, (2019) Leaf water content at different positions and its relationship with photosynthesis when consecutive drought treatments are applied to summer maize from the 3leaf stage[J]. Acta ecol. Sin., 39(1):254-264. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.