Open Access
Issue
E3S Web Conf.
Volume 350, 2022
International Conference on Environment, Renewable Energy and Green Chemical Engineering (EREGCE 2022)
Article Number 01016
Number of page(s) 8
Section Green Chemical Engineering
DOI https://doi.org/10.1051/e3sconf/202235001016
Published online 09 May 2022
  1. D. Feng, A. Soric, O. Boutin, Treatment technologies and degradation pathways of glyphosate: A critical review. Sci Total Environ: 140559 (2020) [CrossRef] [PubMed] [Google Scholar]
  2. Peillex C, Pelletier M. The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J Immunotoxicol, 17:163-174 (2020). [CrossRef] [PubMed] [Google Scholar]
  3. J. Joensson, R Camm, T. Hall Removal and degradation of glyphosate in water treatment: a review. Journal of Water Supply: Research and Technology—AQUA, 62:395-408 (2013). [CrossRef] [Google Scholar]
  4. Ingaramo P, Alarcón R, Muñoz-De-Toro M, Luque E.H. Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility? Mol Cell Endocrinol, 518: 110934 (2020). [Google Scholar]
  5. J.O. Ighalo, O.J. Ajala, A.G. Adeniyi, E.O. Babatunde, M.A. Ajala Ecotoxicology of glyphosate and recent advances in its mitigation by adsorption. Environ Sci Pollut R, 28:1-14 (2020). [Google Scholar]
  6. L. Cao, D. Ma, Z. Zhou, C. Xu, C. Cao, P. Zhao, Q. Huang Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation. Chem Eng J, 368:212-222 (2019). [CrossRef] [Google Scholar]
  7. R. Danial, S. Sobri, L.C. Abdullah, M. N. Mobarekeh FTIR, CHNS and XRD analyses define mechanism of glyphosate herbicide removal by electrocoagulation. Chemosphere, 233:559-569 (2019). [CrossRef] [PubMed] [Google Scholar]
  8. S. Firdous, S. Iqbal, S. Anwar Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere, 30:618-627 (2020). [CrossRef] [Google Scholar]
  9. H. Rubí-Juárez, S. Cotillas, C. Sáez, P. Ca Izares, Barrera-Díaz C, Rodrigo M.A. (2016) Removal of herbicide glyphosate by conductive-diamond electrochemical oxidation. Applied Catalysis B Environmental, 188:305-312. [Google Scholar]
  10. M. Xie, Z. Liu, Y. Xu Removal of glyphosate in neutralization liquor from the glycinedimethylphosphit process by nanofiltration. Journal of Hazardous Materials, 181:975-980 (2010). [CrossRef] [PubMed] [Google Scholar]
  11. J.C. Diel, D.S.P. Franco, I.D.S. Nunes, H.A. Pereira, Moreira K.S, de L. Burgo T.A, et al. Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix. Journal of Environmental Chemical Engineering, 9: 105178 (2021). [CrossRef] [Google Scholar]
  12. J.M. Salman, F.M. Abid Preparation of mesoporous activated carbon from palm-date pits: optimization study on removal of bentazon, carbofuran, and 2, 4D using response surface methodology. Water Sci Technol, 68:1503-1511 (2013). [CrossRef] [PubMed] [Google Scholar]
  13. G.L. Dotto, G. Mckay Current scenario and challenges in adsorption for water treatment. Journal of Environmental Chemical Engineering, 8:103988 (2020). [CrossRef] [Google Scholar]
  14. Y. Huang, Z. Li, K. Yao, C Chen, C. Deng, Y Fang, et al. Suppressing toxic intermediates during photocatalytic degradation of glyphosate by controlling adsorption modes. Applied Catalysis B: Environmental, 299:120671 (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.