Open Access
Issue
E3S Web Conf.
Volume 350, 2022
International Conference on Environment, Renewable Energy and Green Chemical Engineering (EREGCE 2022)
Article Number 02002
Number of page(s) 8
Section Renewable Energy
DOI https://doi.org/10.1051/e3sconf/202235002002
Published online 09 May 2022
  1. Md.Sumon Shahriar and M. Sabbir Rahman. Urban Sensing and Smart Home Energy Optimisations: A Machine Learning Approach. In Proceedings of the 2015 International Workshop on Internet of Things towards Applications (IoT-App ’15). Association for Computing Machinery, New York, NY, USA, 19– 22. (2015). [Google Scholar]
  2. B Dutta, V Adhinarayanan, and W C Feng. GPU power prediction via ensemble machine learning for DVFS space exploration. In Proceedings of the 15th ACM International Conference on Computing Frontiers (CF ’18). Association for Computing Machinery, New York, NY, USA, 240–243. (2018). [Google Scholar]
  3. Feinberg E.A., Genethliou D. Load Forecasting. In: Chow J.H., Wu F.F., Momoh J. (eds) Applied Mathematics for Restructured Electric Power Systems. Power Electronics and Power Systems. Springer, Boston, MA. (2005) [Google Scholar]
  4. Ahmad, T., Chen, H., Huang, R., Yabin, G., Wang, J., Shair, J., Akram, H.M.A., Mohsan, S.A.H. and Kazim, M., Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment. Energy, 158, 17-32. (2018). [CrossRef] [Google Scholar]
  5. Ghalehkhondabi, I., Ardjmand, E., Weckman, G.R. and Young, W.A., An overview of energy demand forecasting methods published in 2005–2015. Energy Systems, 8(2), 411-447. (2017). [CrossRef] [Google Scholar]
  6. Sarker, I.H., Machine learning: Algorithms, realworld applications and research directions. SN Computer Science, 2(3), 1-21. (2021) [CrossRef] [Google Scholar]
  7. Ng, A.,. Advice for applying machine learning. In Machine learning (2011) [PubMed] [Google Scholar]
  8. Sarker, I.H., Alqahtani, H., Alsolami, F., Khan, A.I., Abushark, Y.B. and Siddiqui, M.K., Context premodeling: an empirical analysis for classification based user-centric context-aware predictive modeling. Journal of Big Data, 7(1), 1-23. (2020). [CrossRef] [Google Scholar]
  9. Azuaje, Francisco & Witten, Ian & E, Frank.. Witten IH, Frank E: Data Mining: Practical Machine Learning Tools and Techniques. Biomedical Engineering Online BIOMED ENG ONLINE. 5. 1-2. (2006) [CrossRef] [Google Scholar]
  10. Basu, K., Debusschere, V. and Bacha, S., Appliance usage prediction using a time series based classification approach. In IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society ( 1217-1222). IEEE. October (2012) [Google Scholar]
  11. D Bishwajit & A Vignesh & F Wu.. GPU power prediction via ensemble machine learning for DVFS space exploration. 240-243. (2018) 10.1145/3203217.3203273. [Google Scholar]
  12. G Hackeling.. Mastering Machine Learning With scikit-learn. Packt Publishing. (2014) [Google Scholar]
  13. Géron, A. ’Hands-on machine learning with ScikitLearn and TensorFlow concepts, tools, and techniques to build intelligentsystems’, O’Reilly Media, Paperback . (2017) [Google Scholar]
  14. A. Zeng, H. Ho, Y. Yu, Prediction of building electricity usage using Gaussian Process Regression, Journal of Building Engineering (2019) doi: https://doi.org/10.1016/j.jobe.2019.101054 [Google Scholar]
  15. Chen, Y. and Tan, H., Short-term prediction of electric demand in building sector via hybrid support vector regression. Applied energy, 204, 1363-1374. (2017) [CrossRef] [Google Scholar]
  16. Ahmad T, Chen H, Nonlinear autoregressive and random forest approaches to forecasting electricity load for utility energy management systems, Sustainable Cities and Society (2018) [Google Scholar]
  17. Geurts, Pierre & Ernst, Damien & Wehenkel, Louis. Extremely Randomized Trees. Machine Learning. 63. 3-42. (2006) 10.1007/s10994-006-6226-1. [CrossRef] [Google Scholar]
  18. Chen, T. and Guestrin, C., August. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (785-794). (2016) [Google Scholar]
  19. Wang, R., Lu, S. and Feng, W., A novel improved model for building energy consumption prediction based on model integration. Applied Energy, 262, 114561. (2020) [CrossRef] [Google Scholar]
  20. Touzani, S., Granderson, J. and Fernandes, S. Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy and Buildings, 158, 1533-1543. (2018) [CrossRef] [Google Scholar]
  21. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, null (2/1/2011), 2825–2830. [Google Scholar]
  22. Kangji Li, Chenglei Hu, Guohai Liu, Wenping Xue, Building’s electricity consumption prediction using optimized artificial neural networks and principal component analysis, Energy & Buildings (2015) [Google Scholar]
  23. Putatunda, S. and Rama, K., 2018, November. A comparative analysis of hyperopt as against other approaches for hyper-parameter optimization of XGBoost. In Proceedings of the International Conference on Signal Processing and Machine Learning (6-10). (2018) [Google Scholar]
  24. Dodier, R.H., and Henze, G.P. (February 12, 2004). “Statistical Analysis of Neural Networks as Applied to Building Energy Prediction.” ASME. J. Sol. Energy Eng. 126(1): 592–600, February (2004) [CrossRef] [Google Scholar]
  25. Alawadi, S., Mera, D., Fernández-Delgado, M., Alkhabbas, F., Olsson, C.M. and Davidsson, P. A comparison of machine learning algorithms for forecasting indoor temperature in smart buildings. Energy Systems, 1-17. (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.