Open Access
E3S Web Conf.
Volume 350, 2022
International Conference on Environment, Renewable Energy and Green Chemical Engineering (EREGCE 2022)
Article Number 03011
Number of page(s) 5
Section Green Chemical Engineering
Published online 09 May 2022
  1. K. Rathfelder, W.W.G. Yeh and D. Mackay, Mathematical simulation of soil vapor extraction systems: model development and numerical examples. Journal of Contaminant Hydrology, 8, 263-297 (1991) [CrossRef] [Google Scholar]
  2. M.J. Zenker, R.C. Borden and M.A. Barlaz, Occurrence and Treatment of 1, 4-Dioxane in Aqueous Environments. Environmental Engineering Science, 20, 423-432 (2003) [CrossRef] [Google Scholar]
  3. A.C. McElroy, M.R. Hyman and D.R.U. Knappe, 1, 4-Dioxane in drinking water: emerging for 40 years and still unregulated. Current Opinion in Environmental Science & Health, 7, 117-125 (2019) [CrossRef] [Google Scholar]
  4. L.D.V. Abreu and P.C. Johnson, Effect of vapor source-building separation and building construction on soil vapor intrusion as studied with a threedimensional numerical model. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 39, 4550-4561 (2005) [CrossRef] [PubMed] [Google Scholar]
  5. M. Gi, M. Fujioka, A. Kakehashi, T. Okuno, K. Masumura, T. Nohmi, M. Matsumoto, M. Omori, H. Wanibuchi and S. Fukushima In vivo positive mutagenicity of 1, 4-dioxane and quantitative analysis of its mutagenicity and carcinogenicity in rats. Arch Toxicol, 92, 3207-3221 (2018) [CrossRef] [PubMed] [Google Scholar]
  6. H. Nakagawa, S. Takagi and J. Maekawa, FeredFenton process for the degradation of 1, 4-dioxane with an activated carbon electrode: A kinetic model including active radicals. Chemical Engineering Journal, 296, 398-405 (2016) [CrossRef] [Google Scholar]
  7. H. Barndõk, D. Hermosilla, C. Han, D.D. Dionysiou, C. Negro and Á. Blanco, Degradation of 1, 4-dioxane from industrial wastewater by solar photocatalysis using immobilized NF-TiO2 composite with monodisperse TiO2 nanoparticles. Applied Catalysis B: Environmental, 180, 44-52 (2016) [CrossRef] [Google Scholar]
  8. H. Dang and A.M. Cupples, Identification of the phylotypes involved in cis-dichloroethene and 1, 4dioxane biodegradation in soil microcosms. Sci Total Environ, 794, 148690 (2021) [CrossRef] [PubMed] [Google Scholar]
  9. R.H. Anderson, J.K. Anderson and P.A. Bower, Cooccurrence of 1, 4-dioxane with trichloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: Fact or fiction. Integrated Environmental Assessment and Management, 8, 731-737 (2012) [CrossRef] [PubMed] [Google Scholar]
  10. G. Andaluri and R. Suri, Removal of 1, 4-Dioxane and Volatile Organic Compounds from Groundwater Using Ozone-Based Advanced Oxidation Process. Ozone: Science & Engineering, 39, 423-434 (2017) [CrossRef] [Google Scholar]
  11. D.T. Adamson, R.H. Anderson, S. Mahendra and C.J. Newell, Evidence of 1, 4-dioxane attenuation at groundwater sites contaminated with chlorinated solvents and 1, 4-dioxane. Environmental Science & Technology, 49, 6510-6518 (2015) [CrossRef] [PubMed] [Google Scholar]
  12. H. Barndok, L. Cortijo, D. Hermosilla, C. Negro and A. Blanco, Removal of 1, 4-dioxane from industrial wastewaters: routes of decomposition under different operational conditions to determine the ozone oxidation capacity. Journal of Hazardous Materials, 280, 340-347 (2014) [CrossRef] [PubMed] [Google Scholar]
  13. N. Merayo, D. Hermosilla, L. Cortijo and A. Blanco, Optimization of the Fenton treatment of 1, 4-dioxane and on-line FTIR monitoring of the reaction. Journal of Hazardous Materials, 268, 102-109, (2014) [CrossRef] [PubMed] [Google Scholar]
  14. A. Tawfik, Degradation pathways of 1, 4-dioxan e in biological and advanced oxidation processes. Desalination and Water Treatment, 178, 360-386 (2020) [CrossRef] [Google Scholar]
  15. D.R. Burris, P.R. Dahlen and R.E. Hinchee, Soil Gas Sampling for 1, 4-Dioxane during Heated Soil Vapor Extraction. Groundwater Monitoring & Remediation, 38, 85-89 (2018) [CrossRef] [Google Scholar]
  16. R.E. Hinchee, P.R. Dahlen, P.C. Johnson and D.R. Burris, 1, 4-Dioxane Soil Remediation Using Enhanced Soil Vapor Extraction: I. Field Demonstration. Groundwater Monitoring & Remediation, 38, 40-48 (2018) [CrossRef] [Google Scholar]
  17. D.R. Burris, P.C. Johnson, R.E. Hinchee and P.R. Dahlen, 1, 4-Dioxane Soil Remediation Using Enhanced Soil Vapor Extraction (XSVE): II. Modeling. Groundwater Monitoring & Remediation, 38, 49-56 (2018) [CrossRef] [Google Scholar]
  18. J.F. Horst, C.H. Bell, A. Lorenz, M. Heintz, Y. Miao, J. Saling, D. Favero and S. Mahendra, Bioremediation of 1, 4-Dioxane: Successful Demonstration of In Situ and Ex Situ Approaches. Ground Water Monitoring and Remediation, 39, 1524 (2019) [Google Scholar]
  19. P.C. Johnson, C.C. Stanley, M.W. Kemblowsik, J.D. Cothart and D.L. Byers, A practical approach to the design, operation, and monitoring of soil venting systems. Groundwater Monitoring Review, 159-178 (1990) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.