Open Access
Issue
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01015
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202235101015
Published online 24 May 2022
  1. Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui, High Accuracy ESPRITTLS Technique for Wind Turbine Fault [Google Scholar]
  2. Bart de Ketelaere, Mia Hubert, and Eric Schmitt, Overview of PCA-Based Statistical Process-Monitoring Methods for Time-Dependent, High-Dimensional Data, 12 January 2018. [Google Scholar]
  3. B. Aubert “Détection des courts-circuits inter-spires dans les Générateurs Synchrones à Aimants Permanents: Méthodes basées modèles et filtre de Kalman étend-Application à un canal de génération électrique en aéronautique”, Thèse de doctorat, Toulouse, 2014. [Google Scholar]
  4. J. Chatelain “Machines électriques”, Edition Georgi, Lausanne, 1983 [Google Scholar]
  5. S. A. S. Al Kazzaz and G. K. Singh, “Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques,” Electric Power Systems Research, vol. 65, pp. 197–221, 2003. [CrossRef] [Google Scholar]
  6. W. T. Thomson and R. J. Gilmore: Motor Current Signature Analysis to Detect Faults in Induction Motor Drives - Fundamentals, Data Interpretation, and Industrial Case Histories, Proceeding of the Thirty-Second Turbomachinery Symposium, Houston, Texas, Sept. 2003 [Google Scholar]
  7. A. Gheitasi, Motors Fault Recognition Using Distributed Current Signature Analysis, PhD Thesis, Auckland University of Technology, School of Engineering, 2013. [Google Scholar]
  8. Saad Chakkor, E-diagnostic de processus physiques à base des méthodes de haute résolution Application: machines éoliennes thèse doctorale, 22 juillet 2015. [Google Scholar]
  9. S.S. Mohamed; E.F. El-Saadany; T.K. Abdel-Galil; M.M.A. Salama, ANN-based technique for fault location estimation using TLS-ESPRIT, https://doi.org/10.110/MWSCAS.2003.1562484. [Google Scholar]
  10. Muhammet Unal, Mustafa Onat, Mustafa Demetgul, Haluk Kucuk, Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network, https://doi.org/10.101/j.measurement.2014.08.041. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.