Open Access
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01018
Number of page(s) 9
Published online 24 May 2022
  1. Ay, Chyung and Gunasekaran, S. Ultrasonic attenuation measurements for estimating milk coagulation time. Transactions of the ASAE, (1994), vol. 37 [Google Scholar]
  2. Bakkali, F. Moudden, A. Faiz, B. et al. Ultrasonic measurement of milk coagulation time. Measurement Science and Technology, 2001, vol. 12. [Google Scholar]
  3. Taifi, N., Bakkali, F., Faiz, B., et al. Characterization of the syneresis and the firmness of the milk gel using an ultrasonic technique. Measurement Science and Technology, 2005, vol. 17. [Google Scholar]
  4. Dariouchy, Abdelilah, Aassif, El Houcein, Decultot, Dominique, et al. Acoustic characterization and prediction of the cut-off dimensionless frequency of an elastic tube by neural networks. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, (2007), vol. 54. [Google Scholar]
  5. Izbaim, Driss, Faiz, Bouazza, Moudden, Ali, et al. Contrôle ultrasonore du processus de la fermentation du yaourt. In: 10ème Congrès Français d'Acoustique. (2010). [Google Scholar]
  6. Meng, Rui Feng, et al. On-line monitoring of yogurt fermentation using acoustic impedance method. Applied Mechanics and Materials. Vol. 101. Trans Tech Publications Ltd, (2012). [Google Scholar]
  7. Abdelhak El Mouhtadi. Ultrasonic Characterization of Homogeneous and Composite Viscoelastic Plates. Acoustics [physics.class-ph]. University of Le Havre, (2011). Fr en ch. [Google Scholar]
  8. Ghodhbani, Nacef, Marechal, Pierre, and Duflo, Hugues. Ultrasonic broadband characterization of a viscous liquid: Methods and perturbation factors. Ultrasonics, (2015), vol. 56. [Google Scholar]
  9. Elhanaoui, Abdelkader, Aassif, Elhoucein, Maze, Gérard, et al. Acoustic scattering by a two-layer cylindrical tube immersed in a fluid medium: Existence of a pseudo wave. Ultrasonics, (2016), vol. 65. [Google Scholar]
  10. Jiménez, Antonio, Rufo, Montana, Paniagua, Jesus M., et al. Contributions to ultrasound monitoring of the process of milk curdling. Ultrasonics, (2017), vol. 76. [Google Scholar]
  11. Agounad, S. Aassif, El Houcein, Khandouch, Younes, et al. Characterization and prediction of the backscattered form function of an immersed cylindrical shell using hybrid fuzzy clustering and bioinspired algorithms. Ultrasonics, (2018), vol. 83. [Google Scholar]
  12. SUN, Sihao, L.I., Shiyang, L.I.N., Luan, et al. A novel signal processing method based on cross-correlation and interpolation for ToF measurement. In: 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP). IEEE, (2019). [Google Scholar]
  13. Prosser, W. H., SEALE, Michael, D., et Sm I.T.H., Barry, T. Time-frequency analysis of the dispersion of Lamb modes. The Journal of the Acoustical Society of America, 1999, vol. 105. [Google Scholar]
  14. Sessarego, J. P., Sageloli, J., Degoul, P., et al. Analyse temps-fréquence de signaux en milieux dispersifs. Application à l'étude des ondes de Lamb. Nous, 1990, vol. 1. [Google Scholar]
  15. Gunasekaran, Sundaram et A.Y. Chyung. Milk coagulation cut-time determination using ultrasonics. Journal of Food Process Engineering, (1996), vol. 19. [Google Scholar]
  16. BOUCHEFIRAT, Messaoud et D.I.B., Samira Encadreur. Analyse spectrale en contrôle non destructif par ultrasons. (2019). Thèse de doctorat. Université de Jijel. [Google Scholar]
  17. Flandrin, Patrick. Représentations temps-fréquence des signaux non-stationnaires. (1987). Thèse de d octorat. ANRT. [Google Scholar]
  18. Samet, Naïm, Maréchal, Pierre, et Duflo, Hugues. Ultrasonic characterization of a fluid layer using a broadband transducer. Ultrasonics, 2012, vol. 52, no 3, p. 427–434. [CrossRef] [PubMed] [Google Scholar]
  19. Peters, François et Petit, Luc. A broad band spectroscopy method for ultrasound wave velocity and attenuation measurement in dispersive media. Ultrasonics, 2003, vol. 41. [Google Scholar]
  20. Jeong, Hyunjo et H.S.U., David, K. Experimental analysis of porosity-induced ultrasonic attenuation and velocity change in carbon composites. Ultrasonics, 1995, vol. 33. [Google Scholar]
  21. Strelitzki, R. et Evans, J. A. On the measurement of the velocity of ultrasound in the os calcis using short pulses. European Journal of Ultrasound, 1996, vol. 4. [Google Scholar]
  22. Takeda, Yasushi. Development of an ultrasound velocity profile monitor. Nuclear Engineering and Design, 1991, vol. 126. [Google Scholar]
  23. Mol, Chris R. et Breddels, Paul A. Ultrasound velocity in muscle. The Journal of the Acoustical Society of America, 1982, vol. 71. [Google Scholar]
  24. Mobley, Joel, Marsh, Jon N., Hall, Christopher S., et al. Broadband measurements of phase velocity in Albunex® suspensions. The Journal of the Acoustical Society of America, 1998, vol. 103. [Google Scholar]
  25. Boubal, O. et Oksman, J. Application de la distribution de pseudo Wigner-Ville lissée réallouée à la détection de cliquetis. TS. Traitement du signal, 1998, vol. 15. [Google Scholar]
  26. Andria, Gregorio et Savino, Mario. Interpolated smoothed pseudo Wigner-Ville distribution for accurate spectrum analysis. IEEE transactions on instrumentation and measurement, 1996, vol. 45. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.