Open Access
Issue
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01034
Number of page(s) 4
DOI https://doi.org/10.1051/e3sconf/202235101034
Published online 24 May 2022
  1. R. Hawkins, G. Hon, B. Ren, Next-generation genomics: an integrative approach. Nat. Rev. Genet, 11, 476–486 (2010) [CrossRef] [PubMed] [Google Scholar]
  2. R. Nielsen, J. Paul, A. Albrechtsen, Y. Song, Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. vol. 12, pp. 443–451, 2011 [CrossRef] [PubMed] [Google Scholar]
  3. J. Hirschhorn, M. Daly, Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108 (2005) [CrossRef] [PubMed] [Google Scholar]
  4. R. Duerr R, et al., A genome-wide association study identifies IL23R as an inflammatory bowel disease gene, Science vol. 314, pp. 1461–1463, 2006 [Google Scholar]
  5. J. Quackenbush, Computational analysis of microarray data. Nat. Rev. Genet. 2, 418–427 (2001) [CrossRef] [PubMed] [Google Scholar]
  6. K. Dahlquist, et al., GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat. Genet. vol. 31, pp. 19–20, 2002 [CrossRef] [PubMed] [Google Scholar]
  7. J. Marioni, et al., RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. vol. 18, pp. 1509–1517, 2008 [CrossRef] [PubMed] [Google Scholar]
  8. A. Mortazavi, B. Williams, K. McCue, L. Schaeffer, B. Wold, Mapping and quantifying mammalian transcriptomes by RNA-seq Nat Methods. 7, 621–628 (2008) [CrossRef] [PubMed] [Google Scholar]
  9. Z. Wang, M. Gerstein, M. Snyder, RNA-seq: arevolutionary tool for transcriptomics. Nat. Rev.Genet. 10, 57–63 (2009). [Google Scholar]
  10. V. Rao, K. Srinivas, G. Sujini, and G. Kumar, Protein-protein interaction detection: methods analysis. Int. J. Proteomics 2014 [Google Scholar]
  11. C. Stark, et al., BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539, (2006) [CrossRef] [PubMed] [Google Scholar]
  12. A. Chatraryamontri, et al., MINT: the molecular INTerac-tion database. Nucleic Acids Res. 35, D572–D574, (2007) [CrossRef] [PubMed] [Google Scholar]
  13. G. Bader, D. Betel, C. Hogue, BIND: the biomolecular interaction network database. Nucleic Acids Res. 31, 248–250, (2003) [CrossRef] [PubMed] [Google Scholar]
  14. S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman, Basic local alignment search tool. J. Mol. Biol. 215, 403–410, (1990) [CrossRef] [Google Scholar]
  15. S. Kielbasa, R. Wan, K. Sato, P. Horton, M. Frith, Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493, (2011) [CrossRef] [PubMed] [Google Scholar]
  16. W. Pearson, Flexible sequence similarity searching with the FASTA3 program package. Methods Mol. Biol. 132, 185–219, (2000) [Google Scholar]
  17. W. Reisig, Petri Nets: An Introduction. Berlin, NY: Springer-Verlag. 161 (EATCS monographs on theoretical computer science), (1985) [Google Scholar]
  18. L. Danon, et al., Networks and the epidemiology of infectious disease. Interdis-cip. Perspect Infect. Dis. (2011), 1–28. [Google Scholar]
  19. D. P. Croft, J. Krause, R. James, Social networks in the guppy (poecilia reticulata). Proc. Biol. Sci. 271, S516–S519, (2004) [Google Scholar]
  20. J. Dutkowski, M. Kramer, Surma, R. Balakrishnan, J. Cherry, N. Krogan, T. Ideker, A gene ontology inferred from molecular networks. Nat. Biotechnol. vol. 31, pp. 38–45, 2013. [CrossRef] [PubMed] [Google Scholar]
  21. I. BenGal, Bayesian networks, NewYork, NY: JohnWiley & Sons, Ltd (2008) [Google Scholar]
  22. B. Scholkopf, K. Tsuda, J. Vert, Kernel methods in computational biology. Cambridge, MA: MIT Press (2004). [Google Scholar]
  23. A. Joshua, E. Mary, H. Feltovich, E. Gratacos, D. Krakow, O. Anthony, D. Lawrence, B. Tutschek, FGFR3 Disorders: Thanatophoric Dysplasia, Achondroplasia, and Hypochondroplasia. Fetal Diagnosis and Care (Second Edition), Elsevier, 50, 264–267, (2018) [Google Scholar]
  24. C. Misra, N. Sachan, C. McNally, S. Koenig, H. Nichols, A. Guggilam, P. Lucchesi, W. Pu, D. Srivastava, V. Garg, Congenital heart diseasecausing Gata4 mutation displays functional deficits in vivo. PLoS genetics, 8, (2012), [Google Scholar]
  25. J. Wang, et al. Epilepsy-associated genes. Seizure. Epub 2016 [Google Scholar]
  26. X. Sun, et al., Fgfr3 mutation disrupts chondrogenesis and bone ossification in zebrafish model mimicking CATSHL syndrome partially via enhanced Wnt/ß-catenin signaling. Theranostics, 10, 7111–7130, (2020) [Google Scholar]
  27. I. Subramanian, et al., Multi-omics Data Integration, Interpretation, and Its Application. Bioinformatics and biology insights, 14, (2020) [Google Scholar]
  28. J. Yan, S. Risacher, L. Shen, A. Saykin, Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data, Briefings in bioinformatics, 19, 1370–1381, (2018) [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.