Open Access
Issue |
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
|
|
---|---|---|
Article Number | 01035 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/e3sconf/202235101035 | |
Published online | 24 May 2022 |
- Gralinski, L. E., & Menachery, V. D. Return of the coronavirus: 2019-nCoV. Viruses. 2020; 12: 135. Google Scholar. [CrossRef] [PubMed] [Google Scholar]
- Prem, K., Liu, Y., Russell, T. W., Kucharski, A. J., Eggo, R. M., Davies, N., … & Klepac, P. (2020). The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. The Lancet Public Health, 5(5), e261–e270. [CrossRef] [PubMed] [Google Scholar]
- Redmon, Joseph, Divvala, Santosh, Girshick, Ross, et al. You only look once: Unified, real-time object detection. In : Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 779–788. [Google Scholar]
- Redmon, Joseph et Farhadi, Ali. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018. [Google Scholar]
- Bochkovskiy, Alexey, Wang, Chien-Yao, et Liao, Hong-Yuan Mark. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020. [Google Scholar]
- Zuo, Fan, Gao, Jingqin, Kurkcu, Abdullah, et al. Reference-free video-to-real distance approximationbased urban social distancing analytics amid COVID-19 pandemic. Journal of Transport & Health, 2021, vol. 21, p. 101032. [CrossRef] [Google Scholar]
- Saponara, S., Elhanashi, A. & Gagliardi, A. Implementing a real-time, AI-based, people detection and social distancing measuring system for Covid-19. J Real-Time Image Proc (2021). [Google Scholar]
- Ahmed, Imran, Ahmad, Misbah, Rodrigues, Joel JPC, et al. A deep learning-based social distance monitoring framework for COVID-19. Sustainable Cities and Society, 2021, vol. 65, p. 102571. [CrossRef] [PubMed] [Google Scholar]
- Meivel, S., Devi, K. Indira, Maheswari, S. Uma, et al. Real time data analysis of face mask detection and social distance measurement using Matlab. Materials Today: Proceedings, 2021. [Google Scholar]
- S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards real-time object detection with region proposal networks,” in Proceedings of the 28th International Conference on Neural Information Processing Systems, Ser. NIPS’15, pp. 91–99, MIT Press, Cambridge, MA, USA, 2015. [Google Scholar]
- Qin, Jingchen et Xu, Ning. Reaserch and implementation of social distancing monitoring technology based on SSD. Procedia Computer Science, 2021, vol. 183, p. 768–775. [CrossRef] [Google Scholar]
- Rahim, A., Maqbool, A., Rana, T. (2021) Monitoring social distancing under various low light conditions with deep learning and a single motionless time of flight camera. [Google Scholar]
- Girshick R. Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision; 2015. p. 1440–1448. [Google Scholar]
- Girshick, R., Donahue, J., Darrell, T., Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE transactions on pattern analysis and machine intelligence. 2015;38(1):142–158. [Google Scholar]
- Joseph Redmon, “Darknet: Open Source Neural Networks in C.” http://pjreddie.com/darknet/. (2013-2016). [Google Scholar]
- Redmon, Joseph, and Ali, Farhadi. “YOLO9000: Better, Faster, Stronger” arXiv preprint arXiv:1612.08242 (2016). [Google Scholar]
- Barekatain, M., Miquel Marti, Hsueh-Fu Shih, Samuel Murray, K. Nakayama, Y. Matsuo and H. Prendinger. “Okutama-Action: An Aerial View Video Dataset for Concurrent Human Action Detection.” 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2017): 2153–2160. [CrossRef] [Google Scholar]
- Du, Dawei, et al. “VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results.” 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) (2019): 213–226. [CrossRef] [Google Scholar]
- Google colab, https://research.google.com/colaboratory/faq.html, last accessed 2021/07/16 [Google Scholar]
- Lin, Tsung-Yi, M. Maire, Serge J. Belongie, James Hays, P. Perona, D. Ramanan, Piotr Dollar and C. L. Zitnick. “Microsoft COCO: Common Objects in Context.” ECCV (2014). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.