Open Access
Issue
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01042
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202235101042
Published online 24 May 2022
  1. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition Letters 31, 8, pp.651–666 https://doi.Org/10.1016/j.patrec.2009.09.011 (2010). [CrossRef] [Google Scholar]
  2. D. Müllner, Modern hierarchical, agglomerative clustering algorithms. ArXiv abs/1109.2378 (2011) [Google Scholar]
  3. Berthoz, M. Zaoui, New paradigms, and tests for evaluating and remediating visuospatial deficits in children. Developmental medicine and child neurology 57 Suppl 2,15–20. https://doi.org/10.1111/dmcn.12690 (2015). [CrossRef] [PubMed] [Google Scholar]
  4. P. Corsi Memory and the Medial Temporal Region of the Brain. Doctoral Thesis in Philosophy, McGill University, Montreal (1972). [Google Scholar]
  5. Annaki et al., Computational Analysis of Human Navigation Trajectories in a Spatial Memory Locomotor Task. In: Motahhir, S., Bossoufi, B. (eds) Digital Technologies and Applications. ICDTA 2021. Lecture Notes in Networks and Systems, 211. Springer, Cham. https://doi.org/10.1007/978-3-030-73882-2_22 (2021). [Google Scholar]
  6. M. Islas, M. Ângel, and E. Ciampi, Assessment and Impact of Cognitive Impairment in Multiple Sclerosis: An Overview. Biomedicines, 7,122. https://doi.org/10.3390/biomedicines7010022 (2019). [Google Scholar]
  7. Habas, A. Berthoz, T. Flash, D. Bennequin, Does the Cerebellum Implement or Select Geometries? A Speculative Note. The Cerebellum. 19. 1–7. 10.1007/s12311-019-01095-5 (2020). [Google Scholar]
  8. A. Berthoz, D. Bennequin. Several geometries for movement generation. In: Geometric and numerical foundations of movements. In: Laumond J.P., Mansard, N., Lasserre J.B., editors. Springer tracts in advanced robotics, 117: Springer. p. 13–42. (2017). [Google Scholar]
  9. T. Flash, Brain Representations of Motion Generation and Perception: Space-Time Geometries and the Arts. https://doi.org/10.1007/978-3-030-57227-3_1 (2021). [Google Scholar]
  10. Magnani, & E Defrasne Ait-Said, Geometrical analysis of motion schemes on fencing experts from competition videos. PloS one, 16 (12), e0261888. https://doi.org/10.1371/journal.pone.0261888. (2021). [Google Scholar]
  11. B. Nemec, N. Likar, A. Gams, & A. Ude, Humanrobot cooperation with compliance adaptation along the motion trajectory. Autonomous Robots. 42. 10.1007/s10514017-9676-3 (2018). [Google Scholar]
  12. Q. C. Pham, A General, Fast, and Robust Implementation of the Time-Optimal Path Parameterization Algorithm. IEEE Transactions on Robotics. 30. 10.1109/TRO.2014.2351113 (2013). [Google Scholar]
  13. H. Hicheur, Q. C. Pham, G. Arechavaleta, J. P. Laumond, A. Berthoz, The formation of trajectories during goal-oriented locomotion in humans. I. A stereotyped behavior. The European journal of neuroscience, 26, 8 2376–2390. https://doi.org/10.1111/j.14609568.2007.05836.x (2007). [Google Scholar]
  14. M. A. Bucklin, M. Wu, G. Brown, G. K. E. Gordon, American Society of Biomechanics Journal of Biomechanics Award 2018: Adaptive motor planning of center-of-mass trajectory during goal-directed walking in novel environments. Journal of biomechanics, 94, 5–12. https://doi.org/10.1016/jjbiomech.2019.07.030 (2019). [CrossRef] [PubMed] [Google Scholar]
  15. F. S. Ribeiro, F. H. Santos, P. B. Albuquerque, How Does Allocation of Emotional Stimuli Impact Working Memory Tasks? An Overview. Advances in cognitive psychology, 15, 2,155–168. https://doi.org/10.5709/acp-0265-y (2019). [CrossRef] [PubMed] [Google Scholar]
  16. R. Huang, A.A. Nikooyan, B. Xu et al., Machine learning classifies predictive kinematic features in a mouse model of neurodegeneration. Sci Rep 11, 3950 https://doi.org/10.1038/s41598-021-82694-3 (2021). [Google Scholar]
  17. K. Nowakowski, P. Carvalho, et al. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies. Medical & biological engineering & computing, 59,1, 243–256. https://doi.org/10.1007/s11517-020-02309-3 (2021). [CrossRef] [PubMed] [Google Scholar]
  18. V. Belmonti, A. Berthoz, et al., Navigation strategies as revealed by error patterns on the Magic Carpet test in children with cerebral palsy. Frontiers in psychology. 6, 880. https://doi.org/10.3389/fpsyg.20 15.00880 (2015). [CrossRef] [PubMed] [Google Scholar]
  19. A. Bartonek, L. Piccardi, C. Guariglia, Topographical Working Memory in Children with Cerebral Palsy. Journal of Motor Behavior. 53, 1–9 https://doi.org/10.1080/00222895.2020.1748861 (2020). [Google Scholar]
  20. M. Tedesco, F. Bianchini, et al., Does the cerebellum contribute to human navigation by processing sequential information? Neuropsychology, 31, 5, 564–574. https://doi.org/10.1037/neu0000354 (2017). [CrossRef] [PubMed] [Google Scholar]
  21. L. Piccardi et al., The Walking Corsi Test (WalCT): a normative study of topographical working memory in a sample of 4- to 11-year-olds. The Clinical neuropsychologist, 28, 1, 84–96. https://doi.org/10.1080/13854046.2013.863976 (2014). [Google Scholar]
  22. A. Castilla, et al., A New Paradigm for the Study of Cognitive Flexibility in Children and Adolescents: The ‘Virtual House Locomotor Maze’ (VHLM). Frontiers in Psychiatry. 12 https://doi.org/10.3389/fpsyt.2021.708378 (2021). [Google Scholar]
  23. M. Blagojevic, Comparison possibilities of k-means and HAC clustering in the analysis of users’ patterns of behavior. I-Society 2011 (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.