Open Access
Issue
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01043
Number of page(s) 4
DOI https://doi.org/10.1051/e3sconf/202235101043
Published online 24 May 2022
  1. Reichstein, M., Camps-Valls, G., Stevens, B. et al. Deep learning and process understanding for data-driven Earth system science. Nature vol. 566, pp. 195–204, 2019. https://doi.org/10.1038/s41586-019-0912-1 [CrossRef] [PubMed] [Google Scholar]
  2. Lei Ma, Yu Liuc, Xueliang Zhang, Yuanxin Ye, Gaofei Yin, Brian Alan Johnson. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing 152 (2019) 166–177 https://doi.org/10.1016Zj.isprsjprs.2019.04.015 [CrossRef] [Google Scholar]
  3. Y. Altun et al. (Eds.): Urban Water Flow and Water Level Prediction Based on Deep Learning, ECML PKDD 2017, Part III, LNAI 10536, pp. 317–329, 2017. https://doi.org/10.1007/978-3-319-71273-4_26 [Google Scholar]
  4. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y., 2014. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7 (6), 2094–2107. [CrossRef] [Google Scholar]
  5. Zou, Q., Ni, L., Zhang, T., Wang, Q., 2015. Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 12 (11), 2321–2325. [CrossRef] [Google Scholar]
  6. Romero, A., Gatta, C., Camps-Valls, G., 2016. Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54 (3),1349–1362. [CrossRef] [Google Scholar]
  7. https://www.flickr.com/services/api, 2021-07 [Google Scholar]
  8. Brown, D.G., Walker, R., Manson, S., Seto, K. (2012). Modeling Land Use and Land Cover Change. In:, et al. Land Change Science. Remote Sensing and Digital Image Processing, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2562-4_23 [Google Scholar]
  9. National Academies of Sciences, Engineering, and Medicine. 2001. Grand Challenges in Environmental Sciences. Washington, DC: The National Academies Press. https://doi.org/10.17226/9975. [Google Scholar]
  10. Tan C., Sun F., Kong T., Zhang W., Yang C., Liu C. (2018) A Survey on Deep Transfer Learning. In: Kurkova, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning - ICANN 2018. ICANN 2018. Lecture Notes in Computer Science, vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-W27 [Google Scholar]
  11. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778. 2016. [Google Scholar]
  12. Yi Yang and Shawn Newsam. Bag-Of-Visual-Words and Spatial Extensions for Land-Use Classification, ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS), 2010. [Google Scholar]
  13. https://docs.fast.ai/, 2021/07 [Google Scholar]
  14. https://pytorch.org/, 2021/07 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.