Open Access
Issue
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01068
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202235101068
Published online 24 May 2022
  1. Fisher, R.S., van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., Engel, J.: Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 46, 470–472 (2005). https://doi.org/10.1111/j.0013-9580.2005.66104.x. [CrossRef] [PubMed] [Google Scholar]
  2. Epilepsy, https://www.who.int/news-room/fact-sheets/detail/epilepsy, last accessed 2021/06/22. [Google Scholar]
  3. Shoeibi, A., Khodatars, M., Ghassemi, N., Jafari, M., Moridian, P., Alizadehsani, R., Panahiazar, M., Khozeimeh, F., Zare, A., Hosseini-Nejad, H., Khosravi, A., Atiya, A.F., Aminshahidi, D., Hussain, S., Rouhani, M., Nahavandi, S., Acharya, U.R.: Epileptic Seizures Detection Using Deep Learning Techniques: A Review. Int. J. Environ. Res. Public. Health. 18, 5780 (2021). https://doi.org/10.3390/ijerph18115780. [CrossRef] [Google Scholar]
  4. Gevins, A., Smith, M.E., McEvoy, L.K., Leong, H., Le, J.: Electroencephalographic imaging of higher brain function. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354, 1125–1134 (1999). https://doi.org/10.1098/rstb.1999.0468. [CrossRef] [PubMed] [Google Scholar]
  5. Sethi, N., Sethi, P., Torgovnick, J., Arsura, E.: Physiological and non-physiological EEG artifacts. (2006). https://doi.org/10.5580/2500. [Google Scholar]
  6. Shoeibi, A., Khodatars, M., Ghassemi, N., Jafari, M., Moridian, P., Alizadehsani, R., Panahiazar, M., Khozeimeh, F., Zare, A., Hosseini-Nejad, H., Khosravi, A., Atiya, A.F., Aminshahidi, D., Hussain, S., Rouhani, M., Nahavandi, S., Acharya, U.R.: Epileptic Seizures Detection Using Deep Learning Techniques: A Review. Int. J. Environ. Res. Public. Health. 18, 5780 (2021). https://doi.org/10.3390/ijerph18115780. [CrossRef] [Google Scholar]
  7. Ihle, M., Feldwisch-Drentrup, H., Teixeira, C.A., Witon, A., Schelter, B., Timmer, J., Schulze-Bonhage, A.: EPILEPSIAE - A European epilepsy database. Comput. Methods Programs Biomed. 106, 127–138 (2012). https://doi.org/10.1016Zj.cmpb.2010.08.011. [CrossRef] [Google Scholar]
  8. CHB-MIT Scalp EEG Database v1.0.0, https://physionet.org/content/chbmit/1.0.0/, last accessed 2021/06/24. [Google Scholar]
  9. American Epilepsy Society Seizure Prediction Challenge, https://kaggle.com/c/seizure-prediction, last accessed 2021/06/24. [Google Scholar]
  10. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E. 64, 061907 (2001). https://doi.org/10.1103/PhysRevE.64.061907. [CrossRef] [Google Scholar]
  11. Andrzejak, R.G., Schindler, K., Rummel, C. : Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys. Rev. E. 86, 046206 (2012). https://doi.org/10.1103/PhysRevE.86.046206. [CrossRef] [PubMed] [Google Scholar]
  12. UCI Machine Learning Repository: Epileptic Seizure Recognition Data Set, https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition#, last accessed 2021/06/24. [Google Scholar]
  13. Harati, A., Lopez, S., Obeid, I., Picone, J., Jacobson, M.P., Tobochnik, S.: The TUH EEG CORPUS: A big data resource for automated EEG interpretation. In: 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). pp. 1–5. IEEE, Philadelphia, PA, USA (2014). https://doi.org/10.1109/SPMB.2014.7002953. [Google Scholar]
  14. Liu, C.-L., Xiao, B., Hsaio, W.-H., Tseng, V.S.: Epileptic Seizure Prediction With Multi-View Convolutional Neural Networks. IEEE Access. 7, 170352–170361 (2019). https://doi.org/10.1109/ACCESS.2019.2955285. [CrossRef] [Google Scholar]
  15. Liang, W., Pei, H., Cai, Q., Wang, Y.: Scalp EEG epileptogenic zone recognition and localization based on long-term recurrent convolutional network. Neurocomputing. 396, 569–576 (2020). https://doi.org/10.1016/j.neucom.2018.10.108. [CrossRef] [Google Scholar]
  16. Wei, Z., Zou, J., Zhang, J., Xu, J.: Automatic epileptic EEG detection using convolutional neural network with improvements in time-domain. Biomed. Signal Process. Control. 53, 101551 (2019). https://doi.org/10.1016/j.bspc.2019.04.028. [CrossRef] [Google Scholar]
  17. Daoud, H., Bayoumi, M.A.: Efficient Epileptic Seizure Prediction Based on Deep Learning. IEEE Trans. Biomed. Circuits Syst. 13, 804–813 (2019). https://doi.org/10.1109/TBCAS.2019.2929053. [CrossRef] [PubMed] [Google Scholar]
  18. Toraman, S.: Preictal and Interictal Recognition for Epileptic Seizure Prediction Using Pre-trained 2D-CNN Models. Trait. Signal. 37, 1045–1054 (2020). https://doi.org/10.18280/ts.370617. [CrossRef] [Google Scholar]
  19. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018). https://doi.org/10.1016/j.compbiomed.2017.09.017. [CrossRef] [Google Scholar]
  20. Sun, M., Wang, F., Min, T., Zang, T., Wang, Y.: Prediction for High Risk Clinical Symptoms of Epilepsy Based on Deep Learning Algorithm. IEEE Access. 6, 77596–77605 (2018). https://doi.org/10.1109/ACCESS.2018.2883562. [CrossRef] [Google Scholar]
  21. Truong, N.D., Kuhlmann, L., Bonyadi, M.R., Kavehei, O.: Semi-supervised Seizure Prediction with Generative Adversarial Networks. ArXiv:180608235 Cs Stat. (2018). [Google Scholar]
  22. Li, Y., Liu, Y., Cui, W.-G., Guo, Y.-Z., Huang, H., Hu, Z.-Y.: Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and- Excitation Network. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 782–794 (2020). https://doi.org/10.1109/TNSRE.2020.2973434. [CrossRef] [PubMed] [Google Scholar]
  23. Borhade, R.R., Nagmode, M.S.: Modified Atom Search Optimization-based Deep Recurrent Neural Network for epileptic seizure prediction using electroencephalogram signals. Biocybern. Biomed. Eng. 40, 1638–1653 (2020). https://doi.org/10.1016/j.bbe.2020.10.001. [CrossRef] [Google Scholar]
  24. Wei, X., Zhou, L., Zhang, Z., Chen, Z., Zhou, Y.: Early prediction of epileptic seizures using a long-term recurrent convolutional network. J. Neurosci. Methods. 327, 108395 (2019). https://doi.org/10.1016/jjneumeth.2019.108395. [CrossRef] [Google Scholar]
  25. Xu, G., Ren, T., Chen, Y., Che, W.: A OneDimensional CNN-LSTM Model for Epileptic Seizure Recognition Using EEG Signal Analysis. Front. Neurosci. 14, 578126 (2020). https://doi.org/10.3389/fnins.2020.578126. [CrossRef] [Google Scholar]
  26. Daoud, H., Bayoumi, M.: Deep Learning Approach for Epileptic Focus Localization. IEEE Trans. Biomed. Circuits Syst. 14, 209–220 (2020). https://doi.org/10.1109/TBCAS.2019.2957087. [CrossRef] [PubMed] [Google Scholar]
  27. San-Segundo, R., Gil-Martin, M., D’Haro-Enriquez, L.F., Pardo, J.M.: Classification of epileptic EEG recordings using signal transforms and convolutional neural networks. Comput. Biol. Med. 109, 148–158 (2019). https://doi.org/10.1016/j.compbiomed.2019.04.031. [CrossRef] [Google Scholar]
  28. Li, Y., Liu, Y., Cui, W.-G., Guo, Y.-Z., Huang, H., Hu, Z.-Y.: Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and- Excitation Network. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 782–794 (2020). https://doi.org/10.1109/TNSRE.2020.2973434. [CrossRef] [PubMed] [Google Scholar]
  29. Priya Prathaban, B., Balasubramanian, R.: Dynamic learning framework for epileptic seizure prediction using sparsity based EEG Reconstruction with Optimized CNN classifier. Expert Syst. Appl. 170, 114533 (2021). https://doi.org/10.1016/j.eswa.2020.114533. [CrossRef] [Google Scholar]
  30. Tjepkema-Cloostermans, M.C., de Carvalho, R.C.V., van Putten, M.J.A.M.: Deep learning for detection of focal epileptiform discharges from scalp EEG recordings. Clin. Neurophysiol. 129, 2191–2196 (2018). https://doi.org/10.1016/j.clinph.2018.06.024. [CrossRef] [Google Scholar]
  31. Adadi, A.: A survey on data-efficient algorithms in big data era. J. Big Data. 8, 24 (2021). https://doi.org/10.1186/s40537-021-00419-9. [CrossRef] [Google Scholar]
  32. Adadi, A., Berrada, M.: Peeking Inside the BlackBox: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access. 6, 52138–52160 (2018). https://doi.org/10.1109/ACCESS.2018.2870052. [CrossRef] [Google Scholar]
  33. Wechsler, L.R., Tsao, J.W., Levine, S.R., et al.: Teleneurology applications. Neurology. 80, 670–676 (2013). https://doi.org/10.1212/WNL.0b013e3182823361. [CrossRef] [PubMed] [Google Scholar]
  34. Brunnhuber, F., Slater, J., Goyal, S., Amin, D., Thorvardsson, G., Freestone, D.R., Richardson, M.P.: Past, Present and Future of Home video- electroencephalographic telemetry: A review of the development of in-home video-electroencephalographic recordings. Epilepsia. 61, (2020). https://doi.org/10.1111/epi.16578. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.