Open Access
Issue
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01069
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202235101069
Published online 24 May 2022
  1. E. Almeshaiei, H. Soltan. A methodology for electric power load forecasting. Alexandria Engineering Journal 50(2), 137–144 (2011). [CrossRef] [Google Scholar]
  2. D. Keles, J. Scelle, F. Paraschiv, W. Fichtner, Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Applied Energy 162, 218–230 (2016). [CrossRef] [Google Scholar]
  3. J. Brownlee, Long Short-Term Memory Networks with Python: Develop Sequence Prediction Models with Deep Learning. Machine Learning Mastery, San Juan, PR (2017). [Google Scholar]
  4. G. Dorffner, Neural Networks for Time Series Processing. Neural Network World 6, 447–468 (1996). [Google Scholar]
  5. E. Bujokas, Single and multi-step temperature time series forecasting for Vilnius using LSTM deep learning model, https://github.com/Eligijus112/Vilnius-weather-LSTM, last accessed 2021/06/17. [Google Scholar]
  6. Keras Homepage, https://keras.io, last accessed 2021/06/17. [Google Scholar]
  7. Reliable Prognosis Homepage, https://rp5.ru/weather_archive_in_Belgorod_(airport), last accessed 2021/06/17. [Google Scholar]
  8. Sunset Sunrise Time Homepage, https://sunsetsunrisetime.com/sun/belgorod, last accessed 2021/06/17. [Google Scholar]
  9. R. J. Hyndman, G. Athanasopoulos, Forecasting: principles and practice. 2nd ed. OTexts, Melbourne, Australia (2018). [Google Scholar]
  10. I. Gianfelton, 12-month forecast with LSTM, https://github.com/gianfelton/12-Month-Forecast-With-LSTM, last accessed 2021/06/17. [Google Scholar]
  11. S. Muzaffar, A. Afshari, Short-Term Load Forecasts Using LSTM Networks. Energy Procedia 158, 2922–2927 (2019). [CrossRef] [Google Scholar]
  12. Postman Homepage, https://www.postman.com/, last accessed 2021/11/28. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.