Open Access
Issue
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01073
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202235101073
Published online 24 May 2022
  1. Abbas, F., Gattal, A., Djeddi, C., Bensefia, A., Jamil, A., Saoudi, K.: Offline writer identification based on clbp and vlbp. Pattern Recognition and Artificial Intelligence 1322, 188 (2021) [Google Scholar]
  2. Abbas, F., Gattal, A., Djeddi, C., Siddiqi, I., Bensefia, A., Saoudi, K.: Texture feature column scheme for single-and multi-script writer identification. IET Biometrics 10(2), 179–193 (2021) [CrossRef] [Google Scholar]
  3. Arandjelovic, R., Zisserman, A.: All about vlad. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. pp. 1578–1585 (2013) [Google Scholar]
  4. Bendaoud, N., Hannad, Y., Samaa, A., El Kettani, M.E.Y.: Effect of the subgraphemes’ size on the performance of off-line arabic writer identification. In: International Conference on Big Data, Cloud and Applications. pp. 512–522. Springer (2018) [CrossRef] [Google Scholar]
  5. Bennour, A., Djeddi, C., Gattal, A., Siddiqi, I., Mekhaznia, T.: Handwriting based writer recognition using implicit shape codebook. Forensic science international 301, 91–100 (2019) [CrossRef] [PubMed] [Google Scholar]
  6. Bensefia, A., Nosary, A., Paquet, T., Heutte, L.: Writer identification by writer’s invariants. In: Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition. pp. 274–279. IEEE (2002) [Google Scholar]
  7. Bertolini, D., Oliveira, L.S., Justino, E., Sabourin, R.: Texture-based descriptors for writer identification and verification. Expert Systems with Applications 40(6), 2069–2080 (2013) [CrossRef] [Google Scholar]
  8. Bulacu, M., Schomaker, L.: Text-independent writer identification and verification using textural and allographic features. Pattern Analysis and Machine Intelligence, IEEE Transactions on 29(4), 701–717 (2007) [CrossRef] [PubMed] [Google Scholar]
  9. Christlein, V., Bernecker, D.I., Fonig, F., Angelopoulou, E.: Writer identification and verification using gmm supervectors. In: IEEE Winter Conference on Applications of Computer Vision. pp. 998–1005. IEEE (2014) [CrossRef] [Google Scholar]
  10. Christlein, V., Maier, A.: Encoding cnn activations for writer recognition. In: 2018 13th IAPR International Workshop on Document Analysis Systems (DAS). pp. 169–174. IEEE (2018) [CrossRef] [Google Scholar]
  11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05). vol. 1, pp. 886–893. Ieee (2005) [CrossRef] [Google Scholar]
  12. Djeddi, C., Meslati, L.S., Siddiqi, I., Ennaji, A., El Abed, H., Gattal, A.: Evaluation of texture features for offline arabic writer identification. In: 2014 11th IAPR international workshop on document analysis systems. pp. 106–110. IEEE (2014) [CrossRef] [Google Scholar]
  13. Fiel, S., Sablatnig, R.: Writer identification and retrieval using a convolutional neural network. In: International Conference on Computer Analysis of Images and Patterns. pp. 26–37. Springer (2015) [Google Scholar]
  14. Freitas, C., Oliveira, L.S., Sabourin, R., Bortolozzi, F.: Brazilian forensic letter database. In: 11th International workshop on frontiers on handwriting recognition, Montreal, Canada (2008) [Google Scholar]
  15. Hannad, Y., Siddiqi, I., Djeddi, C., El-Kettani, M.E.Y.: Improving arabic writer identification using score-level fusion of textural descriptors. IET Biometrics 8(3), 221–229 (2019) [CrossRef] [Google Scholar]
  16. Hannad, Y., Siddiqi, I., El Kettani, M.E.Y.: Writer identification using texture descriptors of handwritten fragments. Expert Systems with Applications 47, 14–22 (2016) [CrossRef] [Google Scholar]
  17. He, S., Schomaker, L.: Writer identification using curvature-free features. Pattern Recognition 63, 451–464 (2017) [CrossRef] [Google Scholar]
  18. He, S., Schomaker, L.: Fragnet: Writer identification using deep fragment networks. IEEE Transactions on Information Forensics and Security 15, 30133022 (2020) [Google Scholar]
  19. Jain, R., Doermann, D.: Combining local features for offline writer identification. In: 2014 14th International Conference on Frontiers in Handwriting Recognition. pp. 583–588. IEEE (2014) [CrossRef] [Google Scholar]
  20. Jegou, H., Perronnin, F., Douze, M., S'anchez, J., Perez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE transactions on pattern analysis and machine intelligence 34(9), 1704–1716 (2011) [Google Scholar]
  21. Khan, F.A., Tahir, M.A., Khelifi, F., Bouridane, A., Almotaeryi, R.: Robust offline text independent writer identification using bagged discrete cosine transform features. Expert Systems with Applications 71, 404–415 (2017) [CrossRef] [Google Scholar]
  22. Kleber, F., Fiel, S., Diem, M., Sablatnig, R.: Cvl- database: An off-line database for writer retrieval, writer identification and word spotting. In: 2013 12th international conference on document analysis and recognition. pp. 560–564. IEEE (2013) [CrossRef] [Google Scholar]
  23. Pinhelli, F., Britto Jr, A.S., Oliveira, L.S., Costa, Y.M., Bertolini, D.: Singlesample writers-” document filter” and their impacts on writer identification. arXiv preprint arXiv:2005.08424 (2020) [Google Scholar]
  24. Semma, A., Hannad, Y., and El Kettani, M.E.Y.: Impact of the cnn patch size in the writer identification. In Networking, Intelligent Systems and Security, pages 103–114. Springer, 2022. [CrossRef] [Google Scholar]
  25. Semma, A., Hannad, Y., Siddiqi, I., Djeddi, C., El Kettani, M.E.Y.: Writer identification using deep learning with fast keypoints and harris corner detector. Expert Systems with Applications p. 115473 (2021) [CrossRef] [Google Scholar]
  26. Srihari, S.N., Cha, S.H., Arora, H., Lee, S.: Individuality of handwriting. Journal of Forensic Sciences 47(4), 856–872 (2002) [Google Scholar]
  27. Tang, Y., Wu, X.: Text-independent writer identification via cnn features and joint bayesian. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). pp. 566–571. IEEE (2016) [CrossRef] [Google Scholar]
  28. Xing, L., Qiao, Y.: Deepwriter: A multi-stream deep cnn for text-independent writer identification. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). pp. 584–589. IEEE (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.