Open Access
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01074
Number of page(s) 5
Published online 24 May 2022
  1. Chen, Q., Merath, K., Bagante, F., Akgul, O., Dillhoff, M., Cloyd, J., & Pawlik, T.M. (2018). A Comparison of Open and Minimally Invasive Surgery for Hepatic and Pancreatic Resections Among the Medicare Population. Journal of Gastrointestinal Surgery. DOI: 10.1007/s11605-018-3883-x [Google Scholar]
  2. Ee, W. W. G., Lau, W. L. J., Yeo, W., Von Bing, Y., & Yue, W.M. (2013). Does Minimally Invasive Surgery Have a Lower Risk of Surgical Site Infections Compared With Open Spinal Surgery? [Google Scholar]
  3. Mota, P., Carvalho, N., Carvalho-Dias, E., Jo'ao Costa, M., Correia-Pinto, J., & Lima, E. (2018). VideoBased Surgical Learning: Improving Trainee Education and Preparation for Surgery. Journal of Surgica Education, 75(3), 828–835. doi:10.1016/j.jsurg.2017.09.027 [CrossRef] [Google Scholar]
  4. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015) [CrossRef] [PubMed] [Google Scholar]
  5. Kranzfelder, M, Schneider, A., Fiolka, A, Schwan, E, Gillen, S, Wilhelm, D and Feussner, H, Real-time instrument detection in minimally invasive surgery ising radiofrequency identification technology, in J.Surg. Res., vol. 185, 2013, pp.704–710. [CrossRef] [Google Scholar]
  6. Twinanda A.P, Shehata S., Mutter D., Marescaux, J, De Mathelin, M. and Padoy, N, Endonet: A deep architecture for recognition tasks on laparoscopic videos, IEEE Trans. Med. Imag, vol. 36, 2016, pp. 86–97. [Google Scholar]
  7. Kletz, S., Schoeffmann, K., Benois-Pineau, J., & Husslein, H. (2019). Identifying Surgical Instruments in Laparoscopy Using Deep Learning Instance Segmentation. 2019 International Conference on Content-Based Multimedia Indexing (CBMI). doi:10.1109/cbmi.2019.8877379 [Google Scholar]
  8. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks - Amy Jin, Serena Yeung, Jeffrey Jopling, Jonathan Krause, Dan Azagury, Arnold Milstein, Li Fei-Fei. (2018) IEEE Winter Conference on Applications of Computer Vision (WACV) [Google Scholar]
  9. Wang, S., Raju, A., & Huang, J. (2017). Deep learning based multi-label classification for surgical tool presence detection in laparoscopic videos. [Google Scholar]
  10. Kanakatte, Aparna; Ramaswamy, Akshaya; Gubbi, Jayavardhana; Ghose, Avik; Purushothaman, Balamuralidhar (2020). 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) - Surgical tool segmentation and localization using spatio-temporal deep network., 1658–1661. doi:10.1109/EMBC44109.2020.9176676 [Google Scholar]
  11. Colleoni, Emanuele; Moccia, Sara; Du, Xiaofei; De Momi, Elena; Stoyanov, Danail (2019). Deep Learning Based Robotic Tool Detection and Articulation Estimation With Spatio-Temporal Layers. IEEE Robotics and Automation Letters, 4(3), 2714–2721. doi:10.1109/LRA.2019.2917163 [CrossRef] [Google Scholar]
  12. Cristian da Costa Rocha; Nicolas Padoy; and Benoit Rosa (2019). Self-Supervised Surgical Tool Segmentation using Kinematic Information. International Conference on Robotics and Automation (ICRA) Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019 [Google Scholar]
  13. Simonyan, K., Zisserman, A., May 2015. Very deep convolutional networks for large-scale image recognition. In: Proc ICLR. San Diego, CA, USA. [Google Scholar]
  14. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., Feb. 2017. Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Proc AAAI. San Francisco, CA, USA, pp. 4278–4284. [Google Scholar]
  15. Zoph, B., Vasudevan, V., Shlens, J., Le, Q. V., Jul. 2017. Learning transferable architectures for scalable image recognition. arXiv:1707.07012 [cs, stat]. [Google Scholar]
  16. Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, & Li Fei-Fei. (2009). ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. DOI: 10.1109/cvpr.2009.5206848 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.