Open Access
Issue
E3S Web Conf.
Volume 354, 2022
International Energy2021-Conference on “Renewable Energy and Digital Technologies for the Development of Africa”
Article Number 01006
Number of page(s) 6
Section Energy Planning and Storage
DOI https://doi.org/10.1051/e3sconf/202235401006
Published online 13 July 2022
  1. R. Pereira et al., « Ranking programming languages by energy efficiency », Science of Computer Programming, vol. 205, p. 102609, mai 2021, doi: 10.1016/j.scico.2021.102609. [CrossRef] [Google Scholar]
  2. I. Balouktsis, « Learning Renewable Energy by Scratch Programming », JRET, vol. 9, no 1, p. 129, sept. 2016, doi: 10.12681/jret.8916. [CrossRef] [Google Scholar]
  3. T. Kosar et al., « Comparing general-purpose and domain-specific languages: An empirical study », ComSIS, vol. 7, no 2, p. 247–264, 2010, doi: 10.2298/CSIS1002247K. [CrossRef] [Google Scholar]
  4. M. R. Santos et J. O. Saraiva, « Energy Consumption Measurement of C/C++ Programs Using Clang Tooling », p. 8. [Google Scholar]
  5. R. Pereira et al., « Energy efficiency across programming languages: how do energy, time, and memory relate? », in Proceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering, Vancouver BC Canada, oct. 2017, p. 256–267. doi: 10.1145/3136014.3136031. [CrossRef] [Google Scholar]
  6. Z. Kholmatova, « Impact of programming languages on energy consumption for mobile devices », in Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual Event USA, nov. 2020, p. 1693–1695. doi: 10.1145/3368089.3418777. [CrossRef] [Google Scholar]
  7. T. B. Chandra, P. Verma, et A. K. Dwivedi, « Impact of Programming Languages on Energy Consumption for Sorting Algorithms », in Software Engineering, vol. 731, M. N. Hoda, N. Chauhan, S. M. K. Quadri, et P. R. Srivastava, Éd. Singapore: Springer Singapore, 2019, p. 93–101. doi: 10.1007/978-981-10-8848-3_9. [CrossRef] [Google Scholar]
  8. Pennsylvania State University, Center Valley, PA, 18034, USA et J. A. Stone, « A Sustainability Theme for Introductory Programming Courses », IJMECS, vol. 11, no 2, p. 1–8, Feb. 2019, doi: 10.5815/ijmecs.2019.02.01. [CrossRef] [Google Scholar]
  9. « Scientific Computing Languages - (Lectures on High-performance Computing for Economists V) », 2 novembre 2021. https://www.readkong.com/page/scientific-computing-languages-lectures-on-9181996 (accessed the 31 may 2022). [Google Scholar]
  10. G. Rebala, A. Ravi, et S. Churiwala, « Machine Learning Definition and Basics », in An Introduction to Machine Learning, Cham: Springer International Publishing, 2019, p. 1–17. doi: 10.1007/978-3-030-15729-6_1. [Google Scholar]
  11. W. F. Holmgren, C. W. Hansen, et M. A. Mikofski, « pvlib python: a python package for modeling solar energy systems », JOSS, vol. 3, no 29, p. 884, sept. 2018, doi: 10.21105/joss.00884. [CrossRef] [Google Scholar]
  12. « Disadvantages of Python ». 1 november 2021. [Online]. Available at: https://www.geeksforgeeks.org/disadvantages-of-python [Google Scholar]
  13. J. M. Garrido, « A programming language for implementing computational models », in Proceedings of the 2014 ACM Southeast Regional Conference, Kennesaw Georgia, march 2014, p. 1–6. doi: 10.1145/2638404.2638488. [Google Scholar]
  14. « Stackoverflow », 2 November 2021. [Online]. Available at: https://stackoverflow.blog/2020/05/27/2020-stack-overflow-developer-survey-results [Google Scholar]
  15. « Bootcamp ». [Online]. Available at: https://bootcamp.berkeley.edu/blog/most-in-demand-programming-languages [Google Scholar]
  16. T. Brown, J. Hörsch, et D. Schlachtberger, « PyPSA: Python for Power System Analysis », JORS, vol. 6, no 1, p. 4, Jan. 2018, doi: 10.5334/jors.188. [CrossRef] [Google Scholar]
  17. T. R. Fernandes, L. R. Fernandes, T. R. Ricciardi, L. F. Ugarte, et M. C. de Almeida, « Python Programming Language for Power System Analysis Education and Research », in 2018 IEEE PES Transmission & Distribution Conference and Exhibition - Latin America (T&D-LA), Lima, sept. 2018, p. 1–5. doi: 10.1109/TDC-LA.2018.8511780. [Google Scholar]
  18. M. Abatan et M. Olayemi, « The Role of Statistical Software in Data Analysis », 2014. [Online]. Available at: https://www.researchgate.net/publication/360335782_The_Role_of_Statistical_Software_in_Data_Analysis [Google Scholar]
  19. L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, et B. Hartmann, « Design lessons from the fastest q&a site in the west », in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver BC Canada, mai 2011, p. 2857–2866. doi: 10.1145/1978942.1979366. [CrossRef] [Google Scholar]
  20. B. Vasilescu, V. Filkov, et A. Serebrenik, « StackOverflow and GitHub: Associations between Software Development and Crowdsourced Knowledge », in 2013 International Conference on Social Computing, Alexandria, VA, USA, sept. 2013, p. 188–195. doi: 10.1109/SocialCom.2013.35. [CrossRef] [Google Scholar]
  21. A. Ahmad, C. Feng, S. Ge, et A. Yousif, « A survey on mining stack overflow: question and answering (Q&A) community », DTA, vol. 52, no 2, p. 190–247, march 2018, doi: 10.1108/DTA-07-2017-0054. [CrossRef] [Google Scholar]
  22. « Stackoverflow new ». 1 November 2021. [Online]. Available at: https://stackoverflow.blog/2020/05/27/2020-stack-overflow-developer-survey-results [Google Scholar]
  23. « Stack Overflow Developer Survey 2019 », Stack Overflow. https://insights.stackoverflow.com/survey/2019/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2019 (accessed the 30 June 2022). [Google Scholar]
  24. « Stack Overflow Developer Survey 2021 », Stack Overflow. https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021 (accessed the 30 June 2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.