Open Access
Issue |
E3S Web Conf.
Volume 354, 2022
International Energy2021-Conference on “Renewable Energy and Digital Technologies for the Development of Africa”
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 8 | |
Section | Energy Planning and Storage | |
DOI | https://doi.org/10.1051/e3sconf/202235401009 | |
Published online | 13 July 2022 |
- F. H. Mahmood, A. K. Resen, et A. B. Khamees, « Wind characteristic analysis based on Weibull distribution of Al-Salman site, Iraq », Energy Reports, vol. 6, p. 79–87, févr. (2020), doi: 10.1016/j.egyr.2019.10.021. [CrossRef] [Google Scholar]
- S. Samadianfard et al., « Wind speed prediction using a hybrid model of the multi-layer perceptron and whale optimization algorithm », Energy Reports, vol. 6, p. 1147–1159, nov. (2020), doi: 10.1016/j.egyr.2020.05.001. [CrossRef] [Google Scholar]
- R. Banik, P. Das, S. Ray, et A. Biswas, « Wind power generation probabilistic modeling using ensemble learning techniques », Materials Today: Proceedings, vol. 26, p. 2157–2162, (2020), doi: 10.1016/j.matpr.2020.02.464. [CrossRef] [Google Scholar]
- J. Lee, W. Wang, F. Harrou, et Y. Sun, « Wind Power Prediction Using Ensemble Learning-Based Models », IEEE Access, vol. 8, p. 61517–61527, 2020, doi: 10.1109/ACCESS.2020.2983234. [CrossRef] [Google Scholar]
- J. Varanasi et M. M. Tripathi, « A hybrid model of generalized regression neural network and radial basis function neural network for wind power forecasting in Indian wind farms », Journal of Statistics and Management Systems, vol. 23, no 1, p. 49–63, janv. (2020), doi: 10.1080/09720510.2020.1721598. [CrossRef] [Google Scholar]
- A. Ahmadpour et S. Gholami Farkoush, « Gaussian models for probabilistic and deterministic Wind Power Prediction: Wind farm and regional », International Journal of Hydrogen Energy, vol. 45, no 51, p. 27779–27791, oct. (2020), doi: 10.1016/j.ijhydene.2020.07.081. [CrossRef] [Google Scholar]
- H. Liu et Z. Duan, « Corrected multi-resolution ensemble model for wind power forecasting with real-time decomposition and Bivariate Kernel density estimation », Energy Conversion and Management, vol. 203, p. 112265, janv.(2020), doi: 10.1016/j.enconman.2019.112265. [CrossRef] [Google Scholar]
- I. Pobočíková, Z. Sedliačková, et M. Michalková, « Application of Four Probability Distributions for Wind Speed Modeling », Procedia Engineering, vol. 192, p. 713–718, (2017), doi: 10.1016/j.proeng.2017.06.123. [CrossRef] [Google Scholar]
- H. S. Bagiorgas, G. Mihalakakou, S. Rehman, et L. M. Al-Hadhrami, « Wind power potential assessment for three buoys data collection stations in the Ionian Sea using Weibull distribution function », International Journal of Green Energy, vol. 13, no 7, p. 703–714, mai (2016), doi: 10.1080/15435075.2014.896258. [CrossRef] [Google Scholar]
- T. Aized, S. M. Sohail Rehman, S. Kamran, A. H. Kazim, et S. Ubaid ur Rehman, « Design and analysis of wind pump for wind conditions in Pakistan », Advances in Mechanical Engineering, vol. 11, no 9, p. 168781401988040, sept. (2019), doi: 10.1177/1687814019880405. [CrossRef] [Google Scholar]
- T. P. Chang, « Estimation of wind energy potential using different probability density functions », Applied Energy, vol. 88, no 5, p. 1848–1856, mai (2011), doi: 10.1016/j.apenergy.2010.11.010. [CrossRef] [Google Scholar]
- S. F. Khahro, K. Tabbassum, A. M. Soomro, L. Dong, et X. Liao, « Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband, Sindh Pakistan », Energy Conversion and Management, vol. 78, p. 956–967, févr. (2014), doi: 10.1016/j.enconman.2013.06.062. [CrossRef] [Google Scholar]
- F. H. Mahmood, A. K. Resen, et A. B. Khamees, « Wind characteristic analysis based on Weibull distribution of Al-Salman site, Iraq », Energy Reports, vol. 6, p. 79–87, févr. (2020), doi: 10.1016/j.egyr.2019.10.021. [CrossRef] [Google Scholar]
- S. H. Pishgar-Komleh, A. Keyhani, et P. Sefeedpari, « Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran) », Renewable and Sustainable Energy Reviews, vol. 42, p. 313–322, févr. (2015), doi: 10.1016/j.rser.2014.10.028. [CrossRef] [Google Scholar]
- A. K. Azad, M. G. Rasul, M. M. Alam, S. M. A. Uddin, et S. K. Mondal, « Analysis of Wind Energy Conversion System Using Weibull Distribution », Procedia Engineering, vol. 90, p. 725–732, (2014), doi: 10.1016/j.proeng.2014.11.803. [CrossRef] [Google Scholar]
- I. N. da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B. Liboni, et S. F. dos Reis Alves, « Multilayer Perceptron Networks », in Artificial Neural Networks, Cham: Springer International Publishing,(2017), p. 55–115. doi: 10.1007/978-3-319-43162-8_5. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.