Open Access
Issue
E3S Web Conf.
Volume 354, 2022
International Energy2021-Conference on “Renewable Energy and Digital Technologies for the Development of Africa”
Article Number 02005
Number of page(s) 7
Section Sustainable Electricity Systems and Applications
DOI https://doi.org/10.1051/e3sconf/202235402005
Published online 13 July 2022
  1. Kidmo DK, Deli K, Raidandi D, Yamigno SD. Wind Energy for Electricity Generation in the Far North Region of Cameroon. Energy Procedia. 2016;93:66–73. [CrossRef] [Google Scholar]
  2. Kidmo DK, Deli K, Bogno B. Status of renewable energy in Cameroon. Renew Energy Environ Sustain. 2021;6:2. [CrossRef] [EDP Sciences] [Google Scholar]
  3. Al-Nassar WK, Neelamani S, Al-Salem KA, Al-Dashti HA. Feasibility of offshore wind energy as an alternative source for the state of Kuwait. Energy. 2019;169:783–96. [CrossRef] [Google Scholar]
  4. Adnan M, Ahmad J, Ali SF, Imran M. A techno-economic analysis for power generation through wind energy: A case study of Pakistan. Energy Reports. 2021 Nov 1;7:1424–43. [CrossRef] [Google Scholar]
  5. Gormo VG, Kidmo DK, Ngoussandou BP, Bogno B, Raidandi D, Aillerie M. Wind power as an alternative to sustain the energy needs in Garoua and Guider, North Region of Cameroon. Energy Reports. 2021 Nov 1;7:814–29. [CrossRef] [Google Scholar]
  6. Ahmad SS, Al Rashid A, Raza SA, Zaidi AA, Khan SZ, Koç M. Feasibility analysis of wind energy potential along the coastline of Pakistan. Ain Shams Eng J. 2022 Jan 1;13(1). [Google Scholar]
  7. Kidmo DK, Bogno B, Deli K, Aillerie M, Ngoussandou BP. Economic assessment of WECS for water pumping systems in the North Region of Cameroon. Renew Energy Environ Sustain. 2021;6(6). [Google Scholar]
  8. Nsouandélé JL, Kidmo DK, Djetouda SM, Djongyang N. Estimation statistique des données du vent à partir de la distribution de Weibull en vue d’une prédiction de la production de l’énergie électrique d’origine éolienne sur le Mont Tinguelin à Garoua dans le Nord Cameroun. J Renew Energies [Internet]. 2016 Jun 30 [cited 2022 Jan 7];19(2):291–301. Available from: https://revue.cder.dz/index.php/rer/article/view/568 [Google Scholar]
  9. Teimourian A, Bahrami A, Teimourian H, Vala M, Oraj Huseyniklioglu A. Assessment of wind energy potential in the southeastern province of Iran. Energy Sources, Part A Recover Util Environ Eff [Internet]. 2020 Feb 1 [cited 2022 Feb 8];42(3):329–43. Available from: https://www.tandfonline.com/doi/abs/10.1080/15567036.2019.1587079 [Google Scholar]
  10. Ouahabi MH, Elkhachine H, Benabdelouahab F, Khamlichi A. Comparative study of five different methods of adjustment by the Weibull model to determine the most accurate method of analyzing annual variations of wind energy in Tetouan - Morocco. Procedia Manuf [Internet]. 2020 Jan 1 [cited 2022 Feb 18];46:698–707. Available from: https://power.larc.nasa.gov/ [CrossRef] [Google Scholar]
  11. Kaoga DK, Bogno B, Aillerie M, Raidandi D, Yamigno SD, Hamandjoda O, Tibi B. Assessment of wind energy potential and cost estimation of wind-generated electricity at hilltops surrounding the city of Maroua in Cameroon. AIP Conf Proc. 2016 Jul 25;1758. [Google Scholar]
  12. Aukitino T, Khan MGM, Ahmed MR. Wind energy resource assessment for Kiribati with a comparison of different methods of determining Weibull parameters. Energy Convers Manag. 2017;151:641–60. [CrossRef] [Google Scholar]
  13. Chaurasiya PK, Ahmed S, Warudkar V. Study of different parameters estimation methods of Weibull distribution to determine wind power density using ground based Doppler SODAR instrument. Alexandria Eng J. 2018;57(4):2299–311. [CrossRef] [Google Scholar]
  14. Li Y, Huang X, Tee KF, Li Q, Wu XP. Comparative study of onshore and offshore wind characteristics and wind energy potentials: A case study for southeast coastal region of China. Sustain Energy Technol Assessments [Internet]. 2020 Jun;39:100711. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213138820301363 [CrossRef] [Google Scholar]
  15. Kidmo DK, Bogno B, Deli K, Goron D. Seasonal Wind Characteristics and Prospects of Wind Energy Conversion Systems for Water Production in the Far North Region of Cameroon. Smart Grid Renew Energy. 2020;11(09). [Google Scholar]
  16. SoDa M. Global Modeling and Assimilation Office (GMAO) (2015), MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4 [Internet]. 2022 [cited 2022 Feb 17]. Available from: https://www.soda-pro.com/web-services/meteo-data/merra [Google Scholar]
  17. Tchinda R, Kaptouom E. Wind energy in Adamaoua and North Cameroon provinces. Energy Convers Manag. 2003;44(6):845–57. [CrossRef] [Google Scholar]
  18. Fazelpour F, Markarian E, Soltani N. Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran. Renew Energy. 2017 Aug 1;109:646–67. [CrossRef] [Google Scholar]
  19. Fazelpour F, Soltani N, Soltani S, Rosen MA. Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil. Renew Sustain Energy Rev. 2015;45:87–99. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.