Open Access
Issue
E3S Web Conf.
Volume 354, 2022
International Energy2021-Conference on “Renewable Energy and Digital Technologies for the Development of Africa”
Article Number 02006
Number of page(s) 6
Section Sustainable Electricity Systems and Applications
DOI https://doi.org/10.1051/e3sconf/202235402006
Published online 13 July 2022
  1. IEA, “Access to electricity – SDG7: Data and Projections – Analysis - IEA,” 2022. https://www.iea.org/reports/sdg7-data-and-projections/access-to-electricity (accvessed Apr. 04, 2022). [Google Scholar]
  2. O. E. Diemuodeke, Y. Mulugetta, H. I. Njoku, T. A. Briggs, and M. M. Ojapah, “Solar PV Electrification in Nigeria: Current Status and Affordability Analysis,” J. Power Energy Eng., vol. 09, no. 05, pp. 1–25, 2021, doi: 10.4236/jpee.2021.95001. [CrossRef] [Google Scholar]
  3. IRENA, “REmap – Renewable Energy Roadmaps.” https://www.irena.org/remap (accessed May 19, 2022). [Google Scholar]
  4. Q. Zhu et al., “A model to evaluate the effect of shading objects on the energy yield gain of bifacial modules,” Sol. Energy, vol. 179, no. December 2018, pp. 24–29, 2019, doi: 10.1016/j.solener.2018.12.006. [CrossRef] [Google Scholar]
  5. J. Appelbaum, “Bifacial photovoltaic panels field,” Renew. Energy, vol. 85, pp. 338–343, 2016, doi: 10.1016/j.renene.2015.06.050. [CrossRef] [Google Scholar]
  6. J. E. Castillo-Aguilella and P. S. Hauser, “Multi-Variable Bifacial Photovoltaic Module Test Results and Best-Fit Annual Bifacial Energy Yield Model,” IEEE Access, vol. 4, pp. 498–506, 2016, doi: 10.1109/ACCESS.2016.2518399. [CrossRef] [Google Scholar]
  7. L. Kreinin, N. Bordin, A. Karsenty, A. Drori, D. Grobgeld, and N. Eisenberg, “PV module power gain due to bifacial design. Preliminary experimental and simulation data,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 2171–2175, 2010, doi: 10.1109/PVSC.2010.5615874. [Google Scholar]
  8. S. Guo, T. M. Walsh, and M. Peters, “Vertically mounted bifacial photovoltaic modules: A global analysis,” Energy, vol. 61, pp. 447–454, 2013, doi: 10.1016/j.energy.2013.08.040. [CrossRef] [Google Scholar]
  9. U. A. Yusufoglu, T. M. Pletzer, L. J. Koduvelikulathu, C. Comparotto, R. Kopecek, and H. Kurz, “Analysis of the annual performance of bifacial modules and optimization methods,” IEEE J. Photovoltaics, vol. 5, no. 1, pp. 320–328, 2015, doi: 10.1109/JPHOTOV.2014.2364406. [CrossRef] [Google Scholar]
  10. S. Wang et al., “Bifacial Photovoltaic Systems Energy Yield Modelling,” in Energy Procedia, 2015, vol. 77, pp. 428–433, doi: 10.1016/j.egypro.2015.07.060. [CrossRef] [Google Scholar]
  11. ITRPV, “ITRPV - VDMA,” “International Technology Roadmap For Photovoltaic (ITRPV), Results 2020, 12 Edition,” Apr. 2021. https://itrpv.vdma.org/en/ueber-uns (accessed Jul. 15, 2021). [Google Scholar]
  12. F. J. Batlles, M. A. Rubio, J. Tovar, F. J. Olmo, and L. Alados-Arboledas, “Empirical modeling of hourly direct irradiance by means of hourly global irradiance,” Energy, vol. 25, no. 7, pp. 675–688, 2000, doi: 10.1016/S0360-5442(00)00007-4. [CrossRef] [Google Scholar]
  13. H. C. Hottel, “A SIMPLE MODEL FOR ESTIMATING THE TRANSMITTANCE OF DIRECT SOLAR RADIATION THROUGH CLEAR ATMOSPHERES,” Sol. Energy, vol. 18, pp. 129–134, 1976. [CrossRef] [Google Scholar]
  14. B. B. Y. H. Liu and R. C. Jordan, “The Interrelationship and Characteristic Distribution of Direct , Diffuse and Total Solar Radiation,” Sol Energy, vol. 4(3), pp. 1–19, 1960. [CrossRef] [Google Scholar]
  15. A. J. Duffie and W. A. Beckman, Solar engineering of thermal processes, vol. 3, no. 3. 2013. [CrossRef] [Google Scholar]
  16. G. S. Campbell, J. M. Norman, and J. M. Norman, An Introduction to Environmental Biophysics, 2nd ed. New York: Springer;, 1998. [CrossRef] [Google Scholar]
  17. F. Dimas, S. Gilani, and M. Aris, “Hourly solar radiation estimation from limited meteorological data to complete missing solar radiation data,” Int. Conf. Enviroment Sci. Eng. IPCBEE, vol. 8, pp. 14–18, 2011, [Online]. Available: http://www.ipcbee.com/vol8/4-S017.pdf. [Google Scholar]
  18. T. Mahachi and A. J. Rix, “Evaluation of irradiance decomposition and transposition models for a region in South Africa investigating the sensitivity of various diffuse radiation models,” IECON Proc. (Industrial Electron. Conf., no. October, pp. 3064–3069, 2016, doi: 10.1109/IECON.2016.7793897. [Google Scholar]
  19. X. Sun, M. R. Khan, C. Deline, and M. A. Alam, “Optimization and performance of bifacial solar modules: A global perspective,” Appl. Energy, vol. 212, pp. 1601–1610, 2018, doi: 10.1016/j.apenergy.2017.12.041. [CrossRef] [Google Scholar]
  20. IExplore, “Nigeria — Weather.” https://www.iexplore.com/articles/travel-guides/africa/nigeria/weather (accessed Jun. 01, 2022). [Google Scholar]
  21. H. A. Olatunde Isiolaotan, Helmut Städter, “Solar Photovoltaic Installation Supervision.” Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Nigerian Energy Support Program (NESP), 2017. [Google Scholar]
  22. L. Kreinin, N. Bordin, A. Karsenty, A. Drori, and N. Eisenberg, “Outdoor evaluation of power output improvement of the bifacial module,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 001827–001831, 2011, doi: 10.1109/PVSC.2011.6186308. [Google Scholar]
  23. R. Abdullah, B. Samer, B. Bin Ismail, and A. Zaidi, “Simulation analysis of a 3 . 37 MW PV system using bifacial modules in desert environment Simulation analysis of a 3 . 37 MW PV system using bifacial modules in desert environment,” 2021, doi: 10.1088/1742-6596/1878/1/012026. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.