Open Access
E3S Web Conf.
Volume 355, 2022
2022 Research, Invention, and Innovation Congress (RI²C 2022)
Article Number 01007
Number of page(s) 7
Section Energy Technology
Published online 12 August 2022
  1. J. Wang, Barriers of scaling-up fuel cells: Cost, durability and reliability, Energy, 80 (2015): 509-521 [CrossRef] [Google Scholar]
  2. J.P. Pereira, D.S. Falcao, V.B. Oliveira, and A.M.F.R. Pinto, Performance of a passive direct ethanol fuel cell, Journal of Power Sources, 256 (2014): 14-19 [CrossRef] [Google Scholar]
  3. C. Lamy, A. Lima, V. LeRhun, F. Delime, et al., Recent advances in the development of direct alcohol fuel cells (DAFC), Journal of Power Sources, 105 (2002): 283-296 [CrossRef] [Google Scholar]
  4. Q. Ye, T.S. Zhao, Electrolytic Hydrogen Evolution in DMFCs Induced by Oxygen Interruptions and Its Effect on Cell Performance, Electrochemical and Solid-state Letters, 8(4) (2005): A211-A214 [Google Scholar]
  5. J. Prabhuram, T.S. Zhao, H. Yang, Methanol adsorbates on the DMFC cathode and their effect on the cell performance, Journal of Electroanalytical Chemistry, 578 (2005): 105-112 [CrossRef] [Google Scholar]
  6. A. Mehmood, H.Y. Ha, Performance restoration of direct methanol fuel cells in long-term operation using a hydrogen evolution method, Applied Energy, 114 (2014): 164-171 [CrossRef] [Google Scholar]
  7. L. An, T.S. Zhao, Y.S. Li, Carbon-neutral sustainable energy technology: Direct ethanol fuel cells, Renewable and Sustainable Energy Reviews, 50 (2015): 1462-1468 [CrossRef] [Google Scholar]
  8. V.B. Oliveira, J.P. Pereira, A.M.F.R. Pinto, Modeling of passive direct ethanol fuel cells, Energy, 133 (2017): 652-665 [CrossRef] [Google Scholar]
  9. Y.S. Li and T.S. Zhao, Understanding the performance degradation of anion-exchange membrane direct ethanol fuel cells, International Journal of Hydrogen Energy, 37, (2012): 4413-4421 [CrossRef] [Google Scholar]
  10. A. Jablonski and A. Lewera, Improving the efficiency of a direct ethanol fuel cell by a periodic load change, Chinese Journal of Catalysis, 36, (2015): 496-501 [CrossRef] [Google Scholar]
  11. J. Prabhuram, N.N. Krishnan, B. Choi, T.H. Lim, H.Y. Ha, S.K. Kim, Long-term durability test for direct methanol fuel cell made of hydrocarbon membrane, International Journal of Hydrogen Energy, 35 (2010): 6924-6933 [CrossRef] [Google Scholar]
  12. S. Song, G. Wang, W. Zhou, X. Zhao, G. Sun, Q. Xin, et al., The effect of the MEA preparation procedure on both ethanol crossover and DEFC performance, Journal of Power Sources, 140 (2005): 103-110 [CrossRef] [Google Scholar]
  13. F. Jing, R. Sun, S. Wang, H. Sun and G. Sun, Effect of the anode structure on the stability of direct methanol fuel cell, Energy Fuels, 34 (2020): 3850-3857 [CrossRef] [Google Scholar]
  14. A.M. Zainoodin, S.K. Damarudin, M.S. Masdar, WR.W. Daud, A.B. Mohamad and J. Sahari, Investigation of MEA degradation in a passive direct methanol fuel cell under different modes of operation, Applied Energy, 135 (2014): 364-372 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.