Open Access
Issue
E3S Web Conf.
Volume 355, 2022
2022 Research, Invention, and Innovation Congress (RI²C 2022)
Article Number 01006
Number of page(s) 8
Section Energy Technology
DOI https://doi.org/10.1051/e3sconf/202235501006
Published online 12 August 2022
  1. A. Kulkarni, S. Siahrostami, A. Patel, J. K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction, Chemical Reviews, 118(5) (2018):2302-2312. [CrossRef] [PubMed] [Google Scholar]
  2. M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction, Chemical reviews, 116(6) (2016):3594-3657. [CrossRef] [PubMed] [Google Scholar]
  3. Y.J. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi, H. Wang, Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity, Chemical reviews, 115(9) (2015):3433-3467. [CrossRef] [PubMed] [Google Scholar]
  4. H. Yano, M. Kataoka, H. Yamashita, H. Uchida, M. Watanabe, Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co and Fe) alloys prepared by nanocapsule method, Langmuir, 23(11) (2007):6438-6445. [CrossRef] [PubMed] [Google Scholar]
  5. H. Yano, M. Watanabe, A. Iiyama, H. Uchida, Particle-size effect of Pt cathode catalyst on durability in fuel cells, Nano Energy, 29 (2016):323-333. [CrossRef] [Google Scholar]
  6. S. Cherevko, N. Kulyk, K. J.J. Mayrhofer, Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum, Nano energy, 29 (2016): 275-298. [CrossRef] [Google Scholar]
  7. A.A. Gewirth, J.A. Varnell, A.M. DiAscro, Nonprecious metal catalyst for oxygen reduction in heterogeneous aqueous systems, Chemical reviews, 118(5) (2018):2313-2339. [CrossRef] [PubMed] [Google Scholar]
  8. L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalyst for oxygen reduction reaction, Chemical reviews, 115(11) (2015):4823-4892. [CrossRef] [PubMed] [Google Scholar]
  9. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, science, 323(5915) (2009):760–764. [Google Scholar]
  10. Y. Guo, S. Yao, L. Gao, A. Chen, M. Jiao, H. Cui, Z. Zhou, Boosting bifunctional electrocatalyst activity in S and N co-doped carbon naosheets for high-efficientcy Zn-air batteries, Journal of Materials Chemistry A, 8(8) (2020):4836-4395. [CrossRef] [Google Scholar]
  11. J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance, Angewandte Chemie International Edition, 51(46) (2012):11496-11500. [CrossRef] [Google Scholar]
  12. J. Li, Y. Zhang, X. Zhang, J. Huang, J. Han, Z. Zhang, X. Han, P. Xu, B. Song, S, N dual-doped graphene-like carbon nanosheet as efficient oxygen reduction reaction electrocatalyst, ACS Applied Materials & Interfaces, 9(1) (2017):398-405. [Google Scholar]
  13. K. Qu, Y. Zheng, S. Dai, S. Z. Qiao, Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalyst for oxygen reduction and evolution, Nano Energy,19 (2016):373-381. [CrossRef] [Google Scholar]
  14. Q. Shi, F. Peng, S. Liao, H. Wang, H. Yu, Z. Liu, B. Zhang, D. Su, Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media, Journal of Materials Chemistry A, 1(47) (2013):14853-14857. [CrossRef] [Google Scholar]
  15. C. Dominguez, F.J P. Alonzo, S.A.A. Thabaiti, S.N. Basahel, A.Y. Obaid, A.O. Alyoubi, J.L.G. Fuente, S. Rojas, Effect of N and S co-doping of tytymultiwalled carbon nanotubes for the oxygen reduction, Electrochimica Acta, 157 (2015):158-165. [CrossRef] [Google Scholar]
  16. Z. Liu, H. Nie, Z. Yang, J. Zhang, Z. Jin, Y. Lu, Z. Xiao, S. Huang, Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions, Nanoscale, 5(8) (2013):3283-3288. [CrossRef] [PubMed] [Google Scholar]
  17. C. Hu, L. Dai, Multifunctional carbon-based metal-free electrocatalyst for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution, Advanced Materials, 29(9) (2017):160492-16050. [Google Scholar]
  18. P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions, Angew Angewandte Chemie, 129(2) (2017):610-614. [CrossRef] [Google Scholar]
  19. T. S. J. Wang, C. Qiu, X. Ling, B. Tian, W. Chen, C. Su, B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions, Advanced Science, 5(7) (2018):1800036-1800045. [Google Scholar]
  20. J. Sanetuntikul, K. Ketpang, S. Shanmugam, Hierarchical nanostructured Pt8Ti-TiO2/C as an efficient and durable anode catalyst for direct methanol fuel cells, ACS Catalysis, 5(12) (2015):7321-7327. [CrossRef] [Google Scholar]
  21. K. Ketpang, A. Boonkitkoson, N. Pitipuech, C. Poompipatpong, J. Sanetuntikul, S. Shanmugam, Highly active and durable transition metal-coordinated nitrogen doped carbon electrocatalyst for oxygen reduction reaction in neutral media, E3S Web of Conferences, 14 (2019):01005. [Google Scholar]
  22. K. Ketpang, J. Prathum, P. Juprasat, W. Junla, K. Wichianwat, A. Saejio, C. Poompipatpong, N. Chanunpanich, Electrochemical oxygen reduction reaction performance of water hyacinth derived porous non-precious electrocatalyst in alkaline media, E3S Web of Conferences, 14 (2019):01004. [Google Scholar]
  23. J. Sanetuntikul, S. Shanmugam, High pressure pyrolyzed non-precious metal oxygen reduction catalyst for alkaline polymer electrolyte membrane fuel cells, Nanoscale, 7(17) (2015):7644-7650. [CrossRef] [PubMed] [Google Scholar]
  24. K. S. W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and applied chemistry, 54(11) (1982):2201-2218. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.