Open Access
Issue
E3S Web Conf.
Volume 355, 2022
2022 Research, Invention, and Innovation Congress (RI²C 2022)
Article Number 02005
Number of page(s) 6
Section Environmental Science and Engineering
DOI https://doi.org/10.1051/e3sconf/202235502005
Published online 12 August 2022
  1. O. S. Onwuka, O. Igwe, S. I. Ifediegwu, and C. S. Uwom, “An assessment of the effectiveness of drilling waste treatment process in X-gas field, Niger Delta, Nigeria,” Geol. Ecol. Landscapes, vol. 2, no. 4, (2018): 288–302 [CrossRef] [Google Scholar]
  2. A. R. Ismail, A. H. Alias, W. R. W. Sulaiman, M. Z. Jaafar, and I. Ismail, “Drilling fluid waste management in drilling for oil and gas wells,” Chem. Eng. Trans., vol. 56, (2017): 1351–1356 [Google Scholar]
  3. J. K. Koh, C. W. Lai, M. R. Johan, S. S. Gan, and W. W. Chua, “Recent advances of modified polyacrylamide in drilling technology,” J. Pet. Sci. Eng., vol. 215, part A, (2022): 110566 [Google Scholar]
  4. C. Lam, S. A. Jefferis, T. P. Suckling, and V. M. Troughton, “Effects of polymer and bentonite support fluids on the performance of bored piles,” Soils Found., vol. 55, no. 6, (2015): 1487–1500 [Google Scholar]
  5. S. Jefferis, V. Troughton, and C. Lam, “Polymer systems for fluid supported excavations,” in Geotechnical issues in construction: short paper series and 2nd conference held on 2 November 2009, at CIRIA, London (2011): 7–12. [Google Scholar]
  6. W. Europe, M. Doble, and A. Kumar, “Degradation of Polymers,” in Biotreatment of industrial effluents, Elsevier Ltd, (2005): 101–110. [Google Scholar]
  7. B. Xie, J. Ma, Y. Wang, A. P. Tchameni, M. Luo, and J. Wen, “Enhanced hydrophobically modified polyacrylamide gel for lost circulation treatment in high temperature drilling,” J. Mol. Liq., vol. 325, (2021): 115155 [CrossRef] [Google Scholar]
  8. H. Gamal, S. Elkatatny, S. Basfar, and A. Al-Majed, “Effect of pH on rheological and filtration properties of water-based drilling fluid based on bentonite,” Sustainability, vol. 11, no. 23, (2019): 6714 [CrossRef] [Google Scholar]
  9. H. Gudarzifar, S. Sabbaghi, A. Rezvani, and R. Saboori, “Experimental investigation of rheological & filtration properties and thermal conductivity of water-based drilling fluid enhanced,” Powder Technol., vol. 368, (2020): 323–341 [CrossRef] [Google Scholar]
  10. S. Medhi, S. Chowdhury, D. Kumar, and G. Aryab, “An investigation on the effects of silica and copper oxide nanoparticles on rheological and fluid loss property of drilling fluids,” J. Pet. Explor. Prod. Technol., vol. 10, (2019): 91–101 [Google Scholar]
  11. E. Kusrini, F. Oktavianto, A. Usman, D. P. Mawarni, and M. I. Alhamid, “Synthesis, characterization, and performance of graphene oxide and phosphorylated graphene oxide as additive in water-based drilling fluids,” Appl. Surf. Sci., vol. 506, (2020): 145005 [Google Scholar]
  12. T. Sharma and J. S. Sangwai, “Silica nanofluids in polyacrylamide with and without surfactant: Viscosity, surface tension, and interfacial tension with liquid paraffin,” J. Pet. Sci. Eng., vol. 152, (2017): 575–585 [Google Scholar]
  13. S. K. Inturi, G. R. Dash, and J. Kodavaty, “Role of silica Nano particles in altering rheological properties of drilling fluid in Enhanced Oil Recovery,” Mater. Today Proc., vol. 17, (2019): 354–361 [CrossRef] [Google Scholar]
  14. L. M. Corredor, M. M. Husein, and B. B. Maini, “Impact of PAM-Grafted Nanoparticles on the Performance of Hydrolyzed Polyacrylamide Solutions for Heavy Oil Recovery at Different Salinities,” Ind. Eng. Chem. Res., vol. 58, no. 23, (2019): 9888–9899 [Google Scholar]
  15. L. M. Corredor-rojas, A. H. Sarapardeh, M. M. Husein, P. M. Dong, and B. B. Maini, “Rheological behavior of surface modified silica nanoparticles dispersed in Partially Hydrolyzed Polyacrylamide and Xanthan Gum solutions: Experimental measurements, mechanistic understanding, and model development,” Energy Fuels, vol. 32, no. 10, (2018): 10628–10638 [CrossRef] [Google Scholar]
  16. R. S. Kumar, K. R. Chaturvedi, S. Iglauer, J. Trivedi, and T. Sharma, “Impact of anionic surfactant on stability, viscoelastic moduli, and oil recovery of silica nanofluid in saline environment,” J. Pet. Sci. Eng., vol. 195, (2020): 107634 [Google Scholar]
  17. T. Sharma, G. S. Kumar, B. H. Chon, and J. S. Sangwai, “Thermal stability of oil-in-water Pickering emulsion in the presence of nanoparticle, surfactant, and polymer,” J. Ind. Eng. Chem., vol. 22, (2015): 324–334 [Google Scholar]
  18. M. A. Haruna, S. Pervaiz, Z. Hu, E. Nourafkan, and D. Wen, “Improved rheology and high-temperature stability of hydrolyzed polyacrylamide using graphene oxide nanosheet,” J. Appl. Polym. Sci., vol. 136, no. 22, (2019): 47582 [Google Scholar]
  19. M. S. Muhamad, M. R. Salim, and W.-J. Lau, “ Surface modification of SiO 2 nanoparticles and its impact on the properties of PES-based hollow fiber membrane,” RSC Adv., vol. 5, no. 72, (2015): 58644–58654 [Google Scholar]
  20. G. N. ochuwe Abang, Y. S. Pin, and N. Ridzuan, “Application of silica (SiO2) nanofluid and Gemini surfactants to improve the viscous behavior and surface tension of water-based drilling fluids,” Egypt. J. Pet., vol. 30, no. 4, (2021): 37–42 [Google Scholar]
  21. B. Xiong et al., “Polyacrylamide degradation and its implications in environmental systems,” npj Clean Water, vol. 1, no. 17, (2018) [CrossRef] [Google Scholar]
  22. Y. Zhang, Z. Miao, and J. Zou, “A new cation-modified Al-polyacrylamide flocculant for solid-liquid separation in waste drilling fluid,” J. Appl. Polym. Sci., vol. 132, no. 11, (2015): 41641 [Google Scholar]
  23. E. U. Akpan, G. C. Enyi, G. Nasr, A. A. Yahaya, A. A. Ahmadu, and B. Saidu, “Water-based drilling fluids for high-temperature applications and water-sensitive and dispersible shale formations,” J. Pet. Sci. Eng., vol. 175, (2019): 1028–1038 [CrossRef] [Google Scholar]
  24. M. K. Fokuo et al., “Tannin-Based Deflocculants in High Temperature High Pressure Wells: A Comprehensive Review,” Adv. Chem. Eng. Sci., vol. 11, no. 04, (2021): 263–289 [Google Scholar]
  25. A.-G. Guezennec et al., “Transfer and degradation of polyacrylamide based flocculants in hydrosystems: a review Transfer and degradation of polyacrylamide based flocculants in hydrosystems: a review. Environ-mental Science and Pollution Title: Transfer and degradation of polyacry,” Research, vol. 22, no. 9, (2015) [Online]. [Google Scholar]
  26. F. A. Makinde, A. D. Adejumo, C. T. Ako, and V. E. Efeovbokhan, “Modelling the effects of temperature and aging time on the rheological properties of drilling fluids,” Pet. Coal, vol. 53, no. 3, (2011): 167–182. [Google Scholar]
  27. Z. Vryzas and V. C. Kelessidis, “Nano-based drilling fluids: A review,” Energies, vol. 10, no. 4, (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.