Open Access
E3S Web Conf.
Volume 355, 2022
2022 Research, Invention, and Innovation Congress (RI²C 2022)
Article Number 02008
Number of page(s) 9
Section Environmental Science and Engineering
Published online 12 August 2022
  1. P. Kofstad, High temperature corrosion (Elsevier Applied Science, London, UK, 1988) [Google Scholar]
  2. R.Y. Chen, W.Y.D. Yuen, Oxide-scale structures formed on commercial hot-rolled steel strip and their formation mechanisms, Oxidation of Metals, 56, 1/2, (2001): 89-118 [CrossRef] [Google Scholar]
  3. R.Y. Chen, W.Y.D. Yuen, Oxidation of low-carbon, low-silicon mild steel at 450-900°C under conditions relevant to hot-strip processing, Oxidation of Metals, 57, 1/2, (2002): 53-79 [CrossRef] [Google Scholar]
  4. R.Y. Chen, W.Y.D. Yuen, Review of the high-temperature oxidation of iron and carbon steels in air or oxygen, Oxidation of Metals, 59, 5/6, (2003): 433-468 [CrossRef] [Google Scholar]
  5. R.Y. Chen, W.Y.D. Yuen, Examination of oxide scales of hot rolled steel products, Iron and Steel Institute of Japan International, 45, 1, (2005): 52-59 [CrossRef] [Google Scholar]
  6. P. Sarrazin, A. Galerie, J. Fouletier, Les mécanismes de la corrosion sèche: une approche cinétique (EDP Science, France, 2000) [Google Scholar]
  7. P. Sarrazin, A. Galerie, J. Fouletier, Mechanisms of high temperature corrosion: a kinetic approach (Materials Science Foundations, Trans Tech Publications, Stafa-Zürich, Switzerland, 2008) [Google Scholar]
  8. M.J.L. Gines, G.J. Benitez, T. Perez, E. Merli, M.A. Firpo, W. Egli, Study of the picklability of 1.8 mm hot-rolled steel strip in hydrochloric acid, American Applied ResearchLatin, (2002): 281-288 [Google Scholar]
  9. Z.Y. Jiang, A.K. Tieu, W.H. Sun, J.N. Tang, D.B. Wei, Characterisation of thin oxide scale and its surface roughness in hot metal rolling, Materials Science and Engineering A, 435-436, (2006): 434-438 [CrossRef] [Google Scholar]
  10. L. Suárez, R. Petrov, L. Kestens, M. Lamberigts, Y. Houbaert, Texture evolution of tertiary oxide scale during steel plate finishing hot rolling simulation tests, Materials Science Forum, 550, (2007): 557-562 [CrossRef] [Google Scholar]
  11. M. Zhang, G. Shao, Characterization and properties of oxide scales on hot-rolled strips, Materials Science and Engineering A, 452-453, (2007): 189-193 [CrossRef] [Google Scholar]
  12. Y.-L. Yang, C.-H. Yang, S.-N. Lin, C.-H. Chen, W.-T. Tsai, Effects of Si and its content on the scale formation on hot-rolled steel strips, Materials Chemistry and Physics, 112, (2008): 566-571 [CrossRef] [Google Scholar]
  13. A. Segawa, Reproduction and deformation characteristics of oxide scale in hot rolling using vacuum rolling mill, Materials Science Forum, 696, (2011): 150-155 [CrossRef] [Google Scholar]
  14. V.B Ginzburg, Flat-rolling fundamentals (New York: Marcel Dekker, Inc. 2000) [CrossRef] [Google Scholar]
  15. S. Chandra-ambhorn, T. Phadungwong, K. Sirivedin, Effects of carbon and coiling temperature on the adhesion of thermal oxide scales to hot-rolled carbon steels, Corrosion Science, 115, (2017): 30-40 [CrossRef] [Google Scholar]
  16. S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters, A. Galerie, Oxidation of simulated recycled steels with 0.23 and 1.03 wt.% Si in Ar–20% H2O at 900°C, Corrosion Science, 87, (2014): 101-110 [CrossRef] [Google Scholar]
  17. R.Y. Chen, W.Y.D. Yuen, Isothermal and step isothermal oxidation of copper-containing steels in air at 980-1220°C, Oxidation of Metals, 63, 3/4, (2005): 145-168 [CrossRef] [Google Scholar]
  18. S. Chandra-ambhorn, A. Jutilarptavorn, T. Rojhirunsakool, High temperature oxidation of irons without and with 0.06 wt.% Sn in dry and humidified oxygen, Corrosion Science, 148, (2019): 355-365 [CrossRef] [Google Scholar]
  19. S. Chandra-ambhorn, K. Ngamkham, High temperature oxidation of micro-alloyed steel and its scale adhesion, Oxidation of Metals, 88, (2017): 291-300 [CrossRef] [Google Scholar]
  20. R.Y. Chen, W.Y.D. Yuen, A study of the scale structure of hot-rolled steel strip by simulated coiling and cooling, Oxidation of Metals, 53, 5/6, (2000): 539-560 [CrossRef] [Google Scholar]
  21. R.Y. Chen, W.Y.D. Yuen, Copper enrichment behaviours of copper-containing steels in simulated thin-slab casting processes, Iron and Steel Institute of Japan International, 45, 6, (2005): 807-816 [CrossRef] [Google Scholar]
  22. S. Chandra-ambhorn, K. Ngamkham, N. Jiratthanakul, Effects of process parameters on mechanical adhesion of thermal oxide scales on hot-rolled low carbon steels, Oxidation of metals, 80, 1, (2013): 61-72 [CrossRef] [Google Scholar]
  23. J.L. Beuth, N. Dhanaraj, J. Hammer, S. Laney, F.S. Pettit, G.H. Meier, ASM Materials Solutions Conference and Show (Columbus, OH, October 18-24, 2004) [Google Scholar]
  24. J. Mougin, M. Dupeux, A. Galerie, L. Antoni, Inverted blister test to measure adhesion energy of thermal oxide scales on metals or alloys, Materials Science and Technology, 18, 10, (2002): 1217-1220 [CrossRef] [Google Scholar]
  25. J. Mougin, M. Dupeux, L. Antoni, A. Galerie, Adhesion of thermal oxide scales grown on ferritic stainless steels measured using the inverted blister test, Materials Science and Engineering A, 359, (2003): 44-51 [CrossRef] [Google Scholar]
  26. A. Galerie, F. Toscan, E. N’Dah, K. Przybylski, Y. Wouters, M. Dupeux, Measuring adhesion of Cr2O3 and Al2O3 scales on Fe-based alloys, Materials Science Forum, 461-464, (2004): 631-638 [CrossRef] [Google Scholar]
  27. M.M. Nagl, W.T. Evans, D.J. Hall, S.R.J. Saunders, The failure of iron oxide scales at growth temperature under tensile stress, Journal de Physique IV, 3, (1993): 933-941 [Google Scholar]
  28. M.M. Nagl, S.R.J. Saunders, W.T. Evans, D.J. Hall, The tensile failure of nickel oxide scales at ambient and at growth temperature, Corrosion Science, 35, 5-8, (1993): 965-977 [CrossRef] [Google Scholar]
  29. M.M. Nagl, W.T. Evans, D.J. Hall, S.R.J. Saunders, An in situ investigation of the tensile failure of oxide scales, Oxidation of Metals, 42, (1994): 431-449 of AISI 430 stainless steel in O2-40%H2O at 800°C, Corrosion Science, 203, (2022) [Google Scholar]
  30. M. Krzyzanowski, J.H. Beynon, The tensile failure of mild steel oxides under hot rolling conditions, Steel Research, 70, (1999): 22-27 [CrossRef] [Google Scholar]
  31. M. Krzyzanowski, J.H. Beynon, Finite element model of steel oxide failure during tensile testing under hot rolling conditions, Materials Science and Technology, 15, 10, (1999): 1191-1198 [CrossRef] [Google Scholar]
  32. M. Krzyzanowski, J.H. Beynon, C.M. Sellars, Analysis of secondary oxide-scale failure at entry into the roll gap, Metallurgical and Materials Transactions B, 31, 6, (2000): 1483-1490 [CrossRef] [Google Scholar]
  33. D. Geneve, D. Rouxel, P. Pigeat, M. Confente, Descaling ability of low-alloy steel wires depending on composition and rolling process, Corrosion Science, 52, (2010): 1155-1166 [CrossRef] [Google Scholar]
  34. Y.T. Chiu, C.K. Lin, J.C. Wu, High-temperature tensile and creep properties of a ferritic stainless steel for interconnect in solid oxide fuel cell, Journal of Power Sources, 196, (2011): 2005-2012 [Google Scholar]
  35. K. Ngamkham, S. Niltawach, S. Chandra-ambhorn, Development of tensile test to investigate mechanical adhesion of thermal oxide scales on hot-rolled steel strips produced using different finishing temperatures,silicon content, Acta Materialia, 462-463, (2011): 407-412 [Google Scholar]
  36. S. Chandra-ambhorn, N. Klubvihok, Quantification of adherence of thermal oxide scale on low carbon steel using tensile test, Oxidation of Metals, 85, 1, (2016): 103-125 [CrossRef] [Google Scholar]
  37. T. Nilsonthi, W. Issaard, S. Chandra-Ambhorn, Development of the scale adhesion assessment using a tensile testing machine equipped with a CCD camera, Oxidation of Metals, 88, (2017): 41-55 [CrossRef] [Google Scholar]
  38. W. Issaard, T. Nilsonthi, Application of the tensile test with a CCD camera to assess the adhesion of scale to Si-containing hot-rolled steels, Key Engineering Materials, 728, (2017): 26-30 [CrossRef] [Google Scholar]
  39. N. Na-kalasin, S. Yenchum, T. Nilsonthi, Adhesion behaviour of scales on hot-rolled steel strips produced from continuous casting slabs, Materials Today: Proceedings, 5, (2018): 9359-9367 [CrossRef] [Google Scholar]
  40. S. Chandra-ambhorn, P. Saranyachot, T. Thublaor, High temperature oxidation behaviour of Fe-15.7 wt.% Cr-8.5 wt.% Mn in oxygen without and with water vapour at 700°C, Corrosion Science, 148 (2019): 39-47 [CrossRef] [Google Scholar]
  41. S. Chandra-ambhorn, T. Thublaor, P. Wiman, High temperature oxidation of AISI 430 stainless steel in Ar-H2O at 800°C, Corrosion Science, 167, (2020) [Google Scholar]
  42. P. Wiman, T. Thublaor, T. Rojhirunsakool, M.H.S. Bidabadi, Z.G. Yang, T. Siripongsakul, W. Chandra-ambhorn, S. Chandra-ambhorn, Corrosion behaviour [Google Scholar]
  43. M.Z. Ruhiyuddin, D. Murizam, K.R. Ahmad, Synthesis and characterization of iron produced from iron mill scale, Key Engineering Materials, 594–595, (2014): 118-122 [Google Scholar]
  44. S.R. Prim, M.V. Folgueras, M.A. de Lima, D. Hotza, Synthesis and characterization of hematite pigment obtained from a steel waste industry, Journal of Hazardous Materials, 192, (2011): 1307-1313 [CrossRef] [PubMed] [Google Scholar]
  45. N.J. Cory, T.M. Herrington, The location of hydrogen in the kinetics of oxidation of ferrous alloys by superheated steam, Oxidation of Metals, 29, 1-2, (1988): 135-152 [CrossRef] [Google Scholar]
  46. A.S. Khanna, Introduction to high temperature oxidation and corrosion (Ohio, ASM International, 2004) [Google Scholar]
  47. H. Li, T. Li, C. Li, Z. Wang, G. Wang, Improvement of longitudinal performance uniformity of hot-rolled coils for cold-rolled DP980 steel, Metals, 10, (2020): 1-14 [Google Scholar]
  48. H. Krungkarnchana, C. Kongvarhodom, Low temperature corrosion: oxidation of carbon steel and stainless steel in air, Applied Science and Engineering Progress, 12, 1, (2019): 44-51 [Google Scholar]
  49. G.C. Wood, J. Stringer, The adhesion of growing oxide scales to the substrate, Journal de Physique IV, 3, (1993): 65-74 [Google Scholar]
  50. F. Toscan, L. Antoni, Y. Wouters, M. Dupeux, A. Galerie, Oxidation kinetics and scale spallation of iron-chromium alloys with different titanium contents, Materials Science Forum, 461-464, (2004): 705-712 [CrossRef] [Google Scholar]
  51. S. Chandra-ambhorm, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie, M. Dupeux, Determination of mechanical adhesion energy of thermal oxide scales on AISI 430Ti alloy using tensile test, Materials Science and Technology, 23, 4, (2007): 497-501 [CrossRef] [Google Scholar]
  52. G. Bamba, Y. Wouters, A. Galerie, F. Charlot, A. Dellali, Thermal oxidation kinetics and oxide scale adhesion of Fe-15Cr alloys as a function of their silicon content, Acta Materialia, 54, (2006): 3917-3922 [CrossRef] [Google Scholar]
  53. S. Chandra-ambhorn, Y. Wouters, L. Antoni, F. Toscan, A. Galerie, Adhesion of oxide scales grown on ferritic stainless steels in solid oxide fuel cells temperature and atmosphere conditions, Journal of Power Sources, 171, (2007): 688-695 [CrossRef] [Google Scholar]
  54. T. Nilsonthi, Determination of mechanical adhesion energy of thermal oxide scales on steel produced from medium and thin slabs using tensile test, Key Engineering Materials, 658, (2015): 106-110 [CrossRef] [Google Scholar]
  55. H.E. Evans, Stress effects in high temperature oxidation of metals, International Materials Reviews, 40, 1, (1995): 1-40 [CrossRef] [Google Scholar]
  56. J. Kargin, L.L.S. Valladares, L.E. Borja-castro, J. Xize, D.G. Mukhambetov, Y. V. Konyukhov, N.O. Moreno, A.G.B. Dominguez, C.H.W. Barnes, Characterization of iron oxide waste scales obtained by rolling mill steel industry, Hyperfine Interactions, 243, (2022): 1-10 [CrossRef] [Google Scholar]
  57. J. Tominaga, K. Wakimoto, T. Mori, M. Murakami, T. Yoshimura, Manufacture of wire rods with good descaling property, Transactions of the Iron and Steel Institute of Japan, 22, 8, (1982): 646-656 [CrossRef] [Google Scholar]
  58. S. Garber, Fundamental aspects of scale on mild steel strip, Journal of the Iron and Steel Institute, 192, (1959): 153-160 [Google Scholar]
  59. K. Sachs, G.T.F. Jay, A magnetic seam at the scale/metal interface on mild steel, Journal of the Iron and Steel Institute, 195, (1960):180-189 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.