Open Access
Issue
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
Article Number 02011
Number of page(s) 7
Section Underground Environment and Specialized Application
DOI https://doi.org/10.1051/e3sconf/202235602011
Published online 31 August 2022
  1. B. Yang, H. Yao, F. Wang, A review of ventilation and environment control of underground spaces, Energies. 15, 409 (2022) [CrossRef] [Google Scholar]
  2. J. Yu, Y. Kang, Z. Zhai, Advances in research for underground buildings: Energy, thermal comfort and indoor air quality, Energ Buildings. 215, 109916 (2020). [CrossRef] [Google Scholar]
  3. M. Shan, B. Hwang, K. Wong, A preliminary investigation of underground residential buildings: Advantages, disadvantages, and critical risks, Tunn Undergr Sp Tech. 70, 19–29 (2017). [Google Scholar]
  4. W. Chow, Y. Li, E. Cui, R. Huo, Nature smoke filling in atrium with liquid pool fires up to 1.6 MW, Build Environ. 36, 121–127 (2001). [CrossRef] [Google Scholar]
  5. Y. He, A. Fernando, M. Luo, Determination of interface height from measured parameter profile in enclosure fire experiment, Fire Safety J. 31, 19–38 (1998). [Google Scholar]
  6. S. Lee, H. Ryou, A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio, Build Environ. 41, 719–725 (2006). [CrossRef] [Google Scholar]
  7. L. Li, X. Cheng, X. Wang, H. Zhang, Temperature distribution of fire–induced flow along tunnels under natural ventilation, J Fire Sci. 0, 1–16 (2011). [Google Scholar]
  8. Y. Oka, H. Oka, O. Imazeki, Ceiling-jet thickness and vertical distribution along flat-ceilinged horizontal tunnel with natural ventilation, Tunn Undergr Sp Tech. 53, 68–77 (2016). [Google Scholar]
  9. J. Newman, Experimental evaluation of fire-induced stratification, Combust Flame. 57, 33–39 (1984). [Google Scholar]
  10. H. Nyman, H. Ingason, Temperature stratification in tunnels, Fire Safety J. 48, 30–37 (1984). [Google Scholar]
  11. H. Ingason, A. Lonnermark, Heat release rates from heavy goods vehicle trailer fires in tunnels, Fire Safety J. 40, 646–668 (2005). [Google Scholar]
  12. L. Hua, L Chen, L. Wu, Y. Li, J. Zhang, N. Meng, An experimental investigation and correlation on buoyant gas temperature below ceiling in a slopping tunnel fire, Appl Therm Eng. 51, 246–254 (2013). [Google Scholar]
  13. H. Kurioka, Y. Oka, H. Satoh, O. Sugawa, Fire properties in near field of square fire source with longitudinal ventilation in tunnels, Fire Safety J. 38, 319–340 (2013). [Google Scholar]
  14. Y. Li, B. Lei, H. Ingason, The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires, Fire Safety J. 46, 204–210 (2011). [Google Scholar]
  15. P. Zhao, Y. Yuan, Y. Yuan, N. Yu, T. Yu, A study on ceiling temperature distribution and critical exhaust volumetric flow rate in a long-distance subway tunnel fire with a two-point extraction ventilation system, Energies. 12, 1411 (2019). [CrossRef] [Google Scholar]
  16. L. He, Z. Xu, H. Chen, Q. Liu, Y. Wang, Y. Zhou, Analysis of entrainment phenomenon near mechanical exhaust vent and a prediction model for smoke temperature in tunnel fire, Tunn Undergr Sp Tech, 80, 143–150 (2018). [Google Scholar]
  17. N. Luo, A. Li, B. Leng, L. Xu, X. Liu, Smoke confinement with multi-stream air curtain at stairwell entrance, In Proceedings of the 10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC2017, Jinan, China, 19–22 October 2017, 337–344. [Google Scholar]
  18. R. Gao, A. Li, X. Hao, W. Lei, B. Deng, Prediction of the spread of smoke in a huge transit terminal subway station under six different fire scenarios, Tunn Undergr Sp Tech. 31, 128–138 (2012). [Google Scholar]
  19. L. Chen, L. Hu, X. Zhang, X. Zhang, X. Zhang, L. Yang, Thermal buoyant smoke back–layering flow length in a longitudinal ventilated tunnel with ceiling extraction at difference distance from heat source, Appl Therm Eng. 78, 129–135 (2015). [Google Scholar]
  20. R. Harish, K. Venkatasubbaiah, Effects of buoyancy induced roof ventilation systems for smoke removal in tunnel fires, Tunn Undergr Sp Tech. 42, 195–205 (2014). [Google Scholar]
  21. R. Harish, K. Venkatasubbaiah, Numerical simulation of turbulent plume spread in ceiling vented enclosure, European Journal of Mechanics–B/Fluids. 42,142–158 (2013). [Google Scholar]
  22. Z. Yan, Y. Zhang, Q. Guo, H. Zhu, Y. Shen, Q. Guo, Numerical study on the smoke control using point extraction strategy in a large cross-section tunnel in fire, large cross-section tunnel in fire, Tunn Undergr Sp Tech. 82, 455–467 (2018). [Google Scholar]
  23. K. He, X. Cheng, S. Zhang, Y. Yao, M. Peng, H. Yang, W. Cong, Z. Shi, Z. Chen, Experimental study on smoke control using wide shafts in a natural ventilated tunnel, J Wind Eng Ind Aerod. 195, 104015 (2019). [Google Scholar]
  24. J. Ji, C. Fan, Z. Gao, J. Sun, Effects of vertical shaft geometry on natural ventilation in urban road tunnel fires, J Civ Eng Manag. 20, 466–467 (2012). [Google Scholar]
  25. J. Ji, Z. Gao, C. Fan, W. Zhong, J. Sun, A study of the effect of plug–holing and boundary layer separation on natural ventilation with vertical shaft in urban road tunnel fires, Int J Heat Mass Tran. 55, 6032–6041 (2012). [Google Scholar]
  26. J. Ji, J. Han, C. Fan, Z. Gao, J. Sun, Influence of cross-sectional area and aspect ratio of shaft on natural ventilation in urban road tunnel, Int J Heat Mass Tran. 67, 420–431 (2013). [CrossRef] [Google Scholar]
  27. S. Zhang, K. He, Y. Yao, M. Peng, H. Yang, J. Wang, X. Cheng, Investigation on the critical shaft height of plug–holing in the natural ventilated tunnel fire, Int J Therm Sci. 132, 517–533 (2018). [Google Scholar]
  28. Y. Wang, P. Yan, B. Zhang, J. Jiang, Thermal buoyant smoke back–layering length in a naturally ventilated tunnel with vertical shafts, Appl Therm Eng. 93, 947–957 (2016). [Google Scholar]
  29. L. Hu, F. Tang, D. Yang, S. Liu, R. Huo, Longitudinal distributions of CO concentration and difference with temperature field in a tunnel fire smoke flow, Int J Heat Mass Tran. 53, 2844–2855 (2010). [Google Scholar]
  30. F. Tang, L. Hu, L. Yang, Z. Qiu, X. Zhang, Longitudinal distributions of CO concentration and temperature in buoyant tunnel fire smoke flow in a reduced pressure atmosphere with lower air entrainment at high altitude, Int J Heat Mass Tran. 75, 130–134 (2014). [CrossRef] [Google Scholar]
  31. R. Gao, A. Li, X. Hao, W. Lei, Y. Zhao, B. Deng, Fire–induced smoke control via hybrid ventilation in a huge transit terminal subway station, Energ Buildings. 45, 280–289 (2012). [CrossRef] [Google Scholar]
  32. R. Gao, A. Li, Y. Zhang, N. Luo, How domes improve fire safety in subway stations, Safety Sci. 80, 94–104 (2015). [CrossRef] [Google Scholar]
  33. R. Gao, A. Li, W. Lei, Y. Zhao, Y. Zhang, B. Deng, A novel evacuation passageway formed by a breathing air supply zone combined with upward ventilation, Physica A. 392, 4793–4803 (2013). [Google Scholar]
  34. J. Jung, S. Kang, H. Yoon, K. Shin, J. Lee, Analysis of heat and smoke flow according to platform screen door and fan conditions on fire in underground platform, Adv Civ Eng. 4803058 (2018). [Google Scholar]
  35. Q. Li, Z. Tang, Z. Fang, J. Yuan, J. Wang, Experimental study on fire smoke control using water mist curtain in channel, Journal of Hazardous Materials, Tunn Undergr Sp Tech. 88, 237–249 (2018). [Google Scholar]
  36. Z. Wang, X. Wang, Y. Huang, C. Tao, H. Zhang, Experimental study on fire smoke control using water mist curtain in channel, J Hazard Mater. 342, 231–241 (2018). [CrossRef] [PubMed] [Google Scholar]
  37. J. Sun, Z. Fang, Z. Tang, T. Beji, B. Mercib, Experimental study of the effectiveness of a water system in blocking fire-induced smoke and heat in reduced–scale tunnel tests, Tunn Undergr Sp Tech. 56, 34–44 (2016). [Google Scholar]
  38. Q. Liang, Y. Li, J. Li, H. Xu, K. Li, Numerical studies on the smoke control by water mist screens with transverse ventilation in tunnel fires, Tunn Undergr Sp Tech. 64 177–183 (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.