Open Access
Issue
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
Article Number 05001
Number of page(s) 4
Section Indoor Air Quality and Airborne Contaminants
DOI https://doi.org/10.1051/e3sconf/202235605001
Published online 31 August 2022
  1. S.A. Hawks, A.J. Prussin, S.C. Kuchinsky, J. Pan, L.C. Marr, N.K. Duggal, Infectious SARS-CoV-2 Is Emitted in Aerosol Particles, MBio. 12 (n.d.) e02527-21. https://doi.org/10.1128/mBio.02527-21. [Google Scholar]
  2. G. Buonanno, L. Morawska, L. Stabile, Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications, Environment International. 145 (2020) 106112. https://doi.org/10.1016/j.envint.2020.106112. [Google Scholar]
  3. W. Chen, N. Zhang, J. Wei, H.-L. Yen, Y. Li, Short-range airborne route dominates exposure of respiratory infection during close contact, Building and Environment. 176 (2020) 106859. https://doi.org/10.1016/j.buildenv.2020.106859. [Google Scholar]
  4. D.K. Milton, M.P. Fabian, B.J. Cowling, M.L. Grantham, J.J. McDevitt, Influenza Virus Aerosols in Human Exhaled Breath: Particle Size, Culturability, and Effect of Surgical Masks, PLOS Pathogens. 9 (2013) e1003205. https://doi.org/10.1371/journal.ppat.1003205. [Google Scholar]
  5. W.W. Nazaroff, Indoor aerosol science aspects of SARS-CoV-2 transmission, Indoor Air. 32 (2022) e12970. https://doi.org/10.1111/ina.12970. [Google Scholar]
  6. R.E. Amaro, L. Bourouiba, A.D. Davidson, T. Greenhalgh, A.E. Haddrell, J.L. Jimenez, L. Marr, D.K. Milton, L. Morawska, H.P. Oswin, K.A. Prather, J.P. Reid, R. Tellier, A Consensus Statement on SARS-CoV-2 Aerosol Dynamics, (2022). https://doi.org/10.31219/osf.io/vf96c. [Google Scholar]
  7. S.L. Miller, W.W. Nazaroff, J.L. Jimenez, A. Boerstra, G. Buonanno, S.J. Dancer, J. Kurnitski, L.C. Marr, L. Morawska, C. Noakes, Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event, Indoor Air. 31 (2021) 314–323. https://doi.org/10.1111/ina.12751. [Google Scholar]
  8. Y. Li, W.W. Nazaroff, W. Bahnfleth, P. Wargocki, Y. Zhang, The COVID-19 pandemic is a global indoor air crisis that should lead to change: A message commemorating 30 years of Indoor Air, Indoor Air. 31 (2021) 1683–1686. https://doi.org/10.1111/ina.12928. [Google Scholar]
  9. H. Qian, T. Miao, L. Liu, X. Zheng, D. Luo, Y. Li, Indoor transmission of SARS-CoV-2, Indoor Air. 31 (2021) 639–645. https://doi.org/10.1111/ina.12766. [Google Scholar]
  10. ANSI/ASHRAE 62.1, Ventilation for acceptable Indoor Air Quality, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2016. [Google Scholar]
  11. ANSI/ASHRAE 62.2, Ventilation for acceptable Indoor Air Quality in Residential Buildings, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2016. [Google Scholar]
  12. CEN/TR 16798-2, Energy performance of buildings - Ventilation for buildings - Part 2: Interpretation of the requirements in EN 16798-1 - Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics (Module M1-6), European Committee for Standardization, Brussels, Belgium, 2019. [Google Scholar]
  13. ASHRAE, ASHRAE Position Document on Infectious Aerosols, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA, 2020. https://www.ashrae.org/file%20library/about/position%20documents/pd_infectiousaerosols_2020.pdf. [Google Scholar]
  14. WHO, Roadmap to improve and ensure good indoor ventilation in the context of COVID-19, World Health Organization, Geneva, Switzerland, 2021. [Google Scholar]
  15. REHVA, REHVA COVID-19 guidance document, The Federation of European Heating, Ventilation and Air Conditioning Associations, Brussels, Belgium, 2021. [Google Scholar]
  16. Y. Li, P. Cheng, W. Jia, Poor ventilation worsens short-range airborne transmission of respiratory infection, Indoor Air. 32 (2022) e12946. https://doi.org/10.1111/ina.12946. [Google Scholar]
  17. J.G. Allen, A.M. Ibrahim, Indoor Air Changes and Potential Implications for SARS-CoV-2 Transmission, JAMA. 325 (2021) 2112–2113. https://doi.org/10.1001/jama.2021.5053. [Google Scholar]
  18. ASHRAE, ASHRAE Epidemic Task Force: Building Readiness, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2021. https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-building-readiness.pdf. [Google Scholar]
  19. CDC, Community, Work, and School, Centers for Disease Control and Prevention. (2020). https://www.cdc.gov/coronavirus/2019-ncov/community/ventilation.html (accessed February 12, 2022). [Google Scholar]
  20. J.W. Tang, C.J. Noakes, P.V. Nielsen, I. Eames, A. Nicolle, Y. Li, G.S. Settles, Observing and quantifying airflows in the infection control of aerosol- and airborne-transmitted diseases: an overview of approaches, Journal of Hospital Infection. 77 (2011) 213–222. https://doi.org/10.1016/j.jhin.2010.09.037. [Google Scholar]
  21. A. Melikov, J. Kaczmarczyk, Measurement and prediction of indoor air quality using a breathing thermal manikin, Indoor Air. 17 (2007) 50–59. https://doi.org/10.1111/j.1600-0668.2006.00451.x. [Google Scholar]
  22. P. Höppe, Temperatures of expired air under varying climatic conditions, Int J Biometeorol. 25 (1981) 127–132. https://doi.org/10.1007/BF02184460. [Google Scholar]
  23. X. Shao, X. Li, COVID-19 transmission in the first presidential debate in 2020, Physics of Fluids. 32 (2020) 115125. https://doi.org/10.1063/5.0032847. [Google Scholar]
  24. ISO, 98-3: 2008 Uncertainty of measurement—part 3: guide to the expression of uncertainty in measurement (GUM: 1995), International Organization for Standardization: Geneva, Switzerland. (2008). [Google Scholar]
  25. Z.D. Bolashikov, A.K. Melikov, W. Kierat, Z. Popiołek, M. Brand, Exposure of health care workers and occupants to coughed airborne pathogens in a double-bed hospital patient room with overhead mixing ventilation, HVAC&R Research. 18 (2012) 602–615. https://doi.org/10.1080/10789669.2012.682692. [Google Scholar]
  26. J. Pantelic, K.W. Tham, Adequacy of air change rate as the sole indicator of an air distribution system’s effectiveness to mitigate airborne infectious disease transmission caused by a cough release in the room with overhead mixing ventilation: A case study, HVAC&R Research. 19 (2013) 947–961. https://doi.org/10.1080/10789669.2013.842447. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.