Open Access
Issue
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
Article Number 05037
Number of page(s) 7
Section Indoor Air Quality and Airborne Contaminants
DOI https://doi.org/10.1051/e3sconf/202235605037
Published online 31 August 2022
  1. U.S. EPA. 1970. Clean Air Act. 40CFR50. [Google Scholar]
  2. Zhang Y, Huang W, London SJ, Song G, Chen G, Jiang L, et al. Ozone and daily mortality in Shanghai, China. Environ Health Perspect. 114( 2006):1227–32. [Google Scholar]
  3. Chunxue Yang, Haibing Yang, Shu Guo, Zongshuang Wang, et al. Alternative ozone metrics and daily mortality in Suzhou: The China Air Pollution and Health Effects Study (CAPES), Science of the Total Environment. 426 (2012):83-89. [CrossRef] [Google Scholar]
  4. P.A. Bromberg, H.S. Koren. Ozone-induced human respiratory dysfunction and disease, Toxicology Letters. 82/83(1995):307-316. [Google Scholar]
  5. Shan Liu, Qingyu Huang, Xi Zhang, Wei Dong, Wenlou Zhang, et al. Cardiorespiratory Effects of Indoor Ozone Exposure Associated with Changes in Metabolic Profiles among Children: A Repeated-Measure Panel Study, The Innovation. 100087(2021). [Google Scholar]
  6. Armin Wisthaler, Charles J. Weschler, Reactions of ozone with human skin lipids: Sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air, (Proceedings of the National Academy of the Sciences of the United States of America. 107(2010);6568-6575. [Google Scholar]
  7. Donghyun Rima, Elliott T. Gall, Sagar Ananth, Youngbo Won, Ozone reaction with human surfaces: Influences of surface reaction probability and indoor air flow condition, Building and Environment. 130(2018):40-48. [Google Scholar]
  8. Weschler CJ, Shields HC. Indoor ozone/terpene reactions as a source of indoor particles. Atmos Environ. 33(1999):2301-2312. [Google Scholar]
  9. Yung-Tai Huang, Cheng-Chen Chen, Yaw-Kuang Chen, et al. Environmental test chamber elucidation of ozone-initiated secondary pollutant emissions from painted wooden panels in buildings, Building and Environment. 50(2012):135-140. [Google Scholar]
  10. H. Destaillats, R.L. Maddalena, B.C. Singer, A.T. Hodgson, T.E. McKone, Indoorpollutants emitted by office equipment: a review of reported data and in-formation needs Atmos. Environ. 42 (7) (2008)371-388. [Google Scholar]
  11. J.A. Aldred, E. Darling, G. Morrison, J. Siegel, R.L. Corsi, Benefit-cost analysis ofcommercially available activated carbon filters for indoor ozone removal insingle-family homes Indoor Air. 26 (2016) 501-512. [Google Scholar]
  12. Erin Darlinga, Glenn C. Morrisonb, Richard L. Corsia, Passive removal materials for indoor ozone control, Building and Environment. 106 (2016) 33-44. [Google Scholar]
  13. D.A. Kunkel, E.T. Gall, J.A. Siegel, A. Novoselac, G.C. Morrison, R.L. Corsi, Passive reduction of human exposure to indoor ozone, Build. Environ. 45 (2) (2010) 445-452. [Google Scholar]
  14. E. Gall, J.A. Siegel, R. Corsi, Zero-energy removal of ozone in residences, ASHRAE Tran. 117(2011) 411-418,. [Google Scholar]
  15. Chi P. Hoang, Kerry A. Kinney, Richard L. Corsi Ozone removal by green building materials Building and Environment. 44 (2009) 1627–1633. [Google Scholar]
  16. D. Rim, E.T. Gall, R.L. Maddalena, W.W. Nazaroff, Ozone reaction with interior building materials: influence of diurnal ozone variation, temperature and humidity, Atmos. Environ. 125(2016):15-23. [Google Scholar]
  17. E. Gall E. Darling J.A. Siegel, G.C. Morrison R.L. Corsi, Evaluation of three common green building materials for ozone removal,and primary and secondary emissions of aldehydes Atmos.Environ. 77 (2013):910-918. [Google Scholar]
  18. D.A. Kunkel, E.T. Gall, J.A. Siegel, A. Novoselac, G.C. Morrison, R.L. Corsi, Passive reduction of human exposure to indoor ozone, Build. Environ. 45(2010)445–452. [CrossRef] [Google Scholar]
  19. Chi-Chi Lin, Shu-Chen Hsu Deposition velocities and impact of physical properties on ozone removal for building materials Atmospheric Environment. 101(2015)194-199 [Google Scholar]
  20. E.T. Gall, J.A. Siegel, R.L. Corsi, Modeling ozone removal to indoor materials,including the effects of porosity, pore diameter, and thickness, Environ. Sci.Technol. 49(2015)4398–4406. [Google Scholar]
  21. G.C. Morrison, Z. Ping, D.J. Wiseman, M. Ongwandee, H. Chang, J. Portman, S. Regmi, Rapid measurement of indoor mass-transfer coefficients, Atmos.Environ. 37(2003)5611–5619. [Google Scholar]
  22. G.C. Morrison, D.J. Wiseman, Temporal considerations in the measurement of indoor mass transfer coefficients, Atmos. Environ. 40(2006):3389–3395. [Google Scholar]
  23. G.C. Morrison, P. Zhao, L. Kasthuri, The spatial distribution of pollutant transport to and from indoor surfaces, Atmos. Environ. 40(2006):3677–3685. [Google Scholar]
  24. Fadeyi, M.O. Mass balance modeling of building recirculation rates and filtra-tion efficiencies effects on secondary organic aerosols derived from ozone-initiated chemistry, Build. Simul. 7(2014):165–173. [Google Scholar]
  25. C.J. Cros, G.C. Morrison, J.A. Siegel, R.L. Corsi, Long-term performance of passive materials for removal of ozone from indoor air, Indoor Air. 22(2012):43–53. [Google Scholar]
  26. S.P. Lamble, R.L. Corsi, G.C. Morrison, Ozone deposition velocities, reaction probabilities and product yields for green building materials, Atmos. Environ. 45(2011):6965-6972. [Google Scholar]
  27. M.J.G. Wilson, Indoor air pollution, Proc. R. Soc. Lond., Ser. A. 307(1968):215-221. [Google Scholar]
  28. G.C. Morrison, Z. Ping, D.J. Wiseman, M. Ongwandee, H. Chang, J. Portman, S. Regmi, Rapid measurement of indoor mass-transfer coefficients, Atmos.Environ. 37(2003):5611-5619. [Google Scholar]
  29. Kleno JG, Clausen PA, Weschler CJ, Wolkoff P. Determination of ozone removal rates by selected building products using the FLEC emission cell. Environ-mental Science and Technology. 35(2001):2548–53. [Google Scholar]
  30. Chao Guo, Zhi Gao*, Jialei Shen Emission rates of indoor ozone emission devices: A literature review,Building and Environment. 158(2019):302-318. [Google Scholar]
  31. Jun Wang, Yong Chen, Concentration characteristics of ozone and product for indoor occupant surface chemical reaction under displacement ventilation, Energy and Buildings. 130(2016):378–387. [Google Scholar]
  32. Poopendieck D. Hubbard H.Ward N,et al, Ozone reactions with indoor materials during buildingdisinfection, Atmospheric Environment, 41(2007):3166-3176. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.