Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 01023 | |
Number of page(s) | 8 | |
Section | Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity | |
DOI | https://doi.org/10.1051/e3sconf/202339601023 | |
Published online | 16 June 2023 |
The effectiveness of potted plants in improving indoor air quality: A comparison between chamber and field studies
1 The Bartlett School of Sustainable Construction, University College London, WC1E 6BT, United Kingdom
2 Institute for Environmental Design and Engineering, University College London, WC1E 6BT, United Kingdom
3 School of the Civil Engineering, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing, 400044, China
4 College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
* Corresponding author: xuan.tian.21@ucl.ac.uk
People spend up to 90% of their time inside buildings, making indoor air quality an extremely important factor affecting public health and building design. Due to the inherent ability to absorb/filter pollutants, plants present a promising method for improving indoor air quality. In recent decades, many studies have quantified plants’ effectiveness in removing indoor air pollutants using both chamber and field methods. This paper presents a review working covering these studies and discusses the differences between chamber and field studies, in terms of study methods and results. Through a meta-analysis of 41 chamber studies and 16 field studies, the effectiveness of 182 species in removing 25 pollutants has been estimated. From this work, a larger proportion of significant results were observed in chamber studies (88%), comparing to field studies (65%). Additionally, comparable studies revealed greater removal effectiveness of plants in chamber studies. These discrepancies could be attributed to many factors, such as the size and the airtightness of experimental setup, ventilation, gas exposure scheme, and environmental conditions. It is envisaged that these findings will help reduce the gap between chamber studies and field studies, and provide guidance for the future use of plants in buildings to improve indoor air quality.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.