Open Access
E3S Web Conf.
Volume 357, 2022
i-DUST 2022 – Inter-Disciplinary Underground Science and Technology
Article Number 03001
Number of page(s) 8
Section Critical Zone
Published online 30 September 2022
  1. C. Fauchard and P. Potherat, “Detection de cavites souterraines par methodes geophysiques”, (Laboratoire centrale des ponts et chaussees, 2004) [Google Scholar]
  2. J. Nocedal and S. Wright, “Numerical Optimization”, in Springer, 1999, doi: 10.1007/978-0-387-40065-5 [CrossRef] [Google Scholar]
  3. R. Brossier, S. Operto and J. Virieux, “Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion”. Geophysics, pp. WCC105- WCC118 (2009). [Google Scholar]
  4. B. Liu, S. Yang, Y. Ren, X. Xu, P. Jiang and Y. Chen, “Deep-learning seismic fullwaveform inversion for realistic structural models”. Geophysics, 2021 [Google Scholar]
  5. A. Tarantola, “Inversion of seismic reflection data in the acoustic approximation”, in Geophysics, vol. 49, no. 8, pp. 1259–1266, Aug. 1984. [CrossRef] [Google Scholar]
  6. W. Pang, K. Innanen and Y. Geng, “Multi-parameter acoustic full-waveform inversion: a comparison of different parameterizations and optimization methods”. Crewes Research Report, vol. 28 (2016) [Google Scholar]
  7. F. Bretaudeau, R. Brossier, D. Leparoux, O. Abraham and J. Virieux. “2D elastic fullwaveform imaging of the near-surface: application to synthetic and physical modelling data sets”. Near Surface Geophysics, vol. 11 (2013) [Google Scholar]
  8. R. Brossier. “Imagerie sismique a deux dimensions des milieux visco-elastiques par inversion des formes d’ondes: developpements methodologiques et applications”. (2009) [Google Scholar]
  9. G. Fabien-Ouellet, E. Gloaguen and B. Giroux. “Time domain viscoelastic full waveform inversion”. Geophysical Journal International vol. 209 (2017) [Google Scholar]
  10. Q. Didier, S. Arhab and G. Lefeuve-Mesgouez, “Regularized Gauss-Newton Iterative Scheme Applied to Shallow Subsurface Imaging”, in NSG2021 27th European Meeting of Environmental and Engineering Geophysics, 2021 [Google Scholar]
  11. N. Moes. “Mecanique des milieux continus”. (2015) [Google Scholar]
  12. A. Wirgin, “The inverse crime”, Mathematical Physics, 2004 (Preprint mathph/ 0401050) [Google Scholar]
  13. S. Arhab, G. Lefeuve-Mesgouez and A. Mesgouez, “Principe de reciprocite applique au calcul de la derivee de Frechet de l’operateur non lineaire de propagation d’ondes dans les milieux elastiques et viscoelastiques”. 23eme Congres Francais de Mecanique [Google Scholar]
  14. C.C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse linear equations and sparse least squares”, in ACM Transactions on Mathematical Software (TOMS), 1982, pp. 43-71. [Google Scholar]
  15. L. Sirgue and R. Pratt, “Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies”, in Geophysics, 2004, pp. 231-248, doi: 10.1190/1.1649391 [Google Scholar]
  16. D. Feng, X. Wang and B. Zhang. “A Frequency-Domain Quasi-Newton-Based Biparameter Synchronous Imaging Scheme for Ground-Penetrating Radar With Applications in Full Waveform Inversion”, in IEEE Transactions on Geoscience and Remote Sensing, vol. 59, pp. 1949-1966, (2021) [CrossRef] [Google Scholar]
  17. R. G. Pratt and M. H. Worthington, “Inverse theory applied to multi-source cross-hole tomography. Part 1: Acoustic wave-equation method”, in Geophys. Prospecting, vol. 38, no. 3, pp. 287–310, Apr. 1990. [CrossRef] [Google Scholar]
  18. R.A. Fisher, “Statistical Methods for Research Workers”, 13th Ed., Hafner, 1958 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.