Open Access
Issue |
E3S Web Conf.
Volume 360, 2022
2022 8th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2022)
|
|
---|---|---|
Article Number | 01033 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/e3sconf/202236001033 | |
Published online | 23 November 2022 |
- Zhang X., Tong L., Wang L., et al. The application and analysis of the oxygen-enriched combustion [J]. Energy for Metallurgical Industry, 2007, (06): 41-4+60. [Google Scholar]
- Li S. Y., Xu M. X., Jia L. F., et al. Influence of operating parameters on N2O emission in O-2/CO2 combustion with high oxygen concentration in circulating fluidized bed [J]. Applied Energy, 2016, 173: 197-209. [CrossRef] [Google Scholar]
- Jeevahan J., Poovannan A., Sriram V., et al. Effect of intake air oxygen enrichment for improving engine performance and emissions control in diesel engine [J]. International Journal of Ambient Energy, 2017, 40(1): 96-100. [Google Scholar]
- Baskar P., Senthilkumar A., Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine [J]. Engineering Science and Technology, an International Journal, 2016, 19(1): 438-43. [CrossRef] [Google Scholar]
- Poola R. B., Sekar R., Reduction of NOx and Particulate Emissions by Using Oxygen-Enriched Combustion Air in a Locomotive Diesel Engine [J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(2): 524-33. [CrossRef] [Google Scholar]
- Zhang W., Chen Z., Li W., et al. Influence of EGR and oxygen-enriched air on diesel engine NO-Smoke emission and combustion characteristic [J]. Applied Energy, 2013, 107: 304-14. [CrossRef] [Google Scholar]
- Mello J. P., Mellor A. M. NOx Emissions from Direct Injection Diesel Engines with Water/Steam Dilution [J]. SAE TECHNICAL PAPER SERIES, 1999, 1999-01-0836. [Google Scholar]
- Xiao G.F., Qiao X. Q., Huang Z., et al. Improvement of startability of direct-injection diesel engines by oxygen-enriched intake air [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2007, 221(11): 1453-65. [CrossRef] [Google Scholar]
- Zhang Y., Xiong Y., Liu X., et al. Operating performance of oxygen-enriched membrane module based on application to vehicle engine on highland [J]. Journal of Logistical Engineering University, 2010, 26(5): 51-5. [Google Scholar]
- Callaghan K., Nemser S., Poola R. B., et al. Variable Air Composition with Polymer Membrane - A New Low Emissions Tool [Z]. SAE International. 1998. https://doi.org/10.4271/980178 [Google Scholar]
- Rigby G. R., Watson H. C. Application of Membrane Gas Separation to Oxygen Enrichment of Diesel-Engines [J]. Journal of Membrane Science, 1994, 87(1-2): 159-69. [CrossRef] [Google Scholar]
- Yelvington P. E., Roth R. P., Mayo R. E., et al. Oxygen-Enriched Combustion for Industrial Diesel Engines [J]. Proceedings of the Asme Internal Combustion Engine Division Fall Technical Conference, 2016, 1(V001T03A012). [Google Scholar]
- Zheng Z., Liu W., Liu H., et al. Optical investigation on polyoxymethylene dimethyl ethers spray flame at different oxygen levels in a constant volume vessel [J]. Science China Technological Sciences, 2021, 64(8): 1611-23. [CrossRef] [Google Scholar]
- Wu Z., Kang Z., Deng J., et al. Effect of oxygen content on n-heptane auto-ignition characteristics in a HCCI engine [J]. Applied Energy, 2016, 184: 594-604. [CrossRef] [Google Scholar]
- Nidhi, Subramanian K. A. Experimental investigation on effects of oxygen enriched air on performance, combustion and emission characteristics of a methanol fuelled spark ignition engine [J]. Applied Thermal Engineering, 2019, 147: 501-8. [CrossRef] [Google Scholar]
- Herbinet O., Husson B., Serinyel Z., et al. Experimental and modeling investigation of the low-temperature oxidation of n-heptane [J]. Combustion and Flame, 2012, 159(12): 3455-71. [CrossRef] [PubMed] [Google Scholar]
- Karwat D. M. A., Wagnon S. W., Wooldridge M. S., et al. Low-temperature speciation and chemical kinetic studies of n-heptane [J]. Combustion and Flame, 2013, 160(12): 2693-706. [CrossRef] [Google Scholar]
- Pelucchi M., Bissoli M., Cavallotti C., et al. Improved Kinetic Model of the Low-Temperature Oxidation of n-Heptane [J]. Energy & Fuels, 2014, 28(11): 7178-93. [CrossRef] [Google Scholar]
- Seidel L., Moshammer K., Wang X. X., et al. Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n-heptane flame [J]. Combustion and Flame, 2015, 162(5): 2045-58. [CrossRef] [Google Scholar]
- Zhou Z. Y., Du X. W., Yang J. Z., et al. The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research [J]. J Synchrotron Radiat, 2016, 23: 1035-45. [CrossRef] [PubMed] [Google Scholar]
- Mehl M., Pitz W. J., Westbrook C. K., et al. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions [J]. Proceedings of the Combustion Institute, 2011, 33: 193-200. [CrossRef] [Google Scholar]
- Curran H. J., Gaffuri P., Pitz W. J., et al. A comprehensive modeling study of n- heptane oxidation [J]. Combustion and Flame, 1998, 114(1-2): 149-77. [CrossRef] [Google Scholar]
- Wang Y., Feng L., Geng C., et al. Natural Flame Luminosity and Emission Spectra of Diesel Spray Flame under Oxygen-Enriched Condition in an Optical Constant Volume Vessel [J]. SAE Technical Paper Series. 2018. DOI: 10.4271/2018-01-1781 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.