Open Access
Issue
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 01002
Number of page(s) 8
Section Daylighting in Simulation
DOI https://doi.org/10.1051/e3sconf/202236201002
Published online 01 December 2022
  1. Grobe, L.O., Plörer, D., Noback, A., 2020. Architectural cases for lighting simulation. Digital dataset: https://c4science.ch/source/AC4LS [Google Scholar]
  2. Giovannini, L., Favoino, F., Lo Verso, V.R.M., Serra, V., Pellegrino, A., 2020. GLANCE (GLare ANnual Classes Evaluation): An approach for a simplified spatial glare evaluation. Building and Environment 186, https://doi.org/10.1016/j.buildenv.2020.107375 [Google Scholar]
  3. Grobe, L.O., Plörer, D., Noback, A., 2020. Architectural cases for lighting simulation. Digital dataset: https://c4science.ch/source/AC4LS [Google Scholar]
  4. Jones, N.L., 2019. Fast Climate-Based Glare Analysis and Spatial Mapping. in 16th International IBPSA Conference. [Google Scholar]
  5. McNeil, A., Burrell, G., 2016. Applicability of DGP and DGI for evaluating glare in a brightly daylit space (2016) ASHRAE and IBPSA-USA Building Simulation Conference, pp. 57–64. [Google Scholar]
  6. Pierson, C., Wienold, J., Bodart, M., 2018. Daylight Discomfort Glare Evaluation with Evalglare: Influence of Parameters and Methods on the Accuracy of Discomfort Glare Prediction. Buildings 8, 94. https://doi.org/10.3390/buildings8080094 [CrossRef] [Google Scholar]
  7. Santos, L., Caldas, L., 2021. Assessing the glare potential of side-lit indoor spaces: a simulation-based approach. Architectural Science Review 64, 139–152. https://doi.org/10.1080/00038628.2020.1758622 [CrossRef] [Google Scholar]
  8. Subramaniam, S., 2017. Daylighting Simulations with Radiance using Matrix-based Methods. LBNL. https://www.radiance-online.org/learning/tutorials [Google Scholar]
  9. Walkenhorst, O., Luther, J., Reinhart, C., Timmer, J., 2002. Dynamic annual daylight simulations based on one-hour and one-minute means of irradiance data. Solar Energy 72, 385–395. https://doi.org/10.1016/S0038-092X(02)00019-1 [Google Scholar]
  10. Ward, G.J., 1994. The RADIANCE lighting simulation and rendering system, in: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’94. Association for Computing Machinery, New York, NY, USA, pp. 459–472. https://doi.org/10.1145/192161.192286 [Google Scholar]
  11. Wasilewski, S., 2021. Raytraverse: Navigating the Lightfield to Enhance Climate-Based Daylight Modeling 9. SimAUD. [Google Scholar]
  12. Wasilewski, S., Grobe, L.O., Wienold, J., Andersen, M., 2022. Efficient Simulation for Visual Comfort Evaluations. Energy and Buildings https://doi.org/10.1016/j.enbuild.2022.112141 [Google Scholar]
  13. Wienold, J., Andersen, M., 2022. Adaptive glare coefficient method for climate-based daylight glare analyses. To be submitted in summer 2022. [Google Scholar]
  14. Wienold, J., 2009. Dynamic daylight glare evaluation, in: 11th International IBPSA Conference. pp. 944–951. [Google Scholar]
  15. Wienold, J., Iwata, T., Sarey Khanie, M., Erell, E., Kaftan, E., Rodriguez, R., Yamin Garreton, J., Tzempelikos, T., Konstantzos, I., Christoffersen, J., Kuhn, T., Pierson, C., Andersen, M., 2019. Crossvalidation and robustness of daylight glare metrics. Lighting Research & Technology https://doi.org/10.1177/1477153519826003 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.