Open Access
Issue
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 01001
Number of page(s) 7
Section Daylighting in Simulation
DOI https://doi.org/10.1051/e3sconf/202236201001
Published online 01 December 2022
  1. Amundadottir, M. L. (2016). Light-driven model for identifying indicators of non-visual health potential in the built environment. Ph. D. thesis, EPFL. [Google Scholar]
  2. Balakrishnan, P. and A. Jakubiec (2019). Spectral rendering with daylight: a comparison of two spectral daylight simulation platforms. In Building Simulation 2019, Rome, Italy. [Google Scholar]
  3. Bourgeois, D., C. F. Reinhart, and G. Ward (2008). Standard daylight coefficient model for dynamic day- lighting simulations. Building Research and Information 36(1), 68–82. [CrossRef] [Google Scholar]
  4. Brown, T., G. Brainard, C. Cajochen, C. Czeisler, J. Han-Ifin, S. Lockley, R. Lucas, M. Munch, J. O’Hagan, S. Peirson, L. Price, T. Roenneberg, L. Schlangen, D. Skene, M. Spitschan, C. Vetter, P. Zee, and K. Wright (2022). Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS biology 20(3). [Google Scholar]
  5. Hattar, S., H. W. Liao, M. Takao, D. M. Berson, and K. W. Yau (2002). Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295(5557), 1065–1070. [Google Scholar]
  6. Inanici, M., M. Brennan, and E. Clark (2015). Spectral daylighting simulations: Computing circadian light. In Building Simulation 2015, Hyderabad, India. [Google Scholar]
  7. Inanici, M. and Z.G.F. Architects (2015). Lark Spectral Lighting. [Google Scholar]
  8. International Commission on Illumination (2018). System for Metrology of Optical Radiation for ipRGC- Influenced Responses to Light (CIE S 026/E:2018). [Google Scholar]
  9. International WELL Building Institute (2021). WELL v2. [Google Scholar]
  10. Khademagha, P. (2021). Light directionality in design of healthy offices. Ph. D. thesis, Eindhoven University of Technology. [Google Scholar]
  11. Khademagha, P., M. B. Aries, A. L. Rosemann, and E. J. van Loenen (2016). Implementing non-image-forming effects of light in the built environment: A review on what we need. Building and Environment 108, 263–272. [CrossRef] [Google Scholar]
  12. Lucas, R., S. Peirson, D. Berson, T. Brown, H. Cooper, C. Czeisler, M. Figueiro, P. Gamlin, S. Lockley, J. O’Hagan, L. Price, I. Provencio, D. Skene, and G. Brainard (2014, 1). Measuring and using light in the melanopsin age. Trends in Neurosciences 37(1), 1–9. [Google Scholar]
  13. Pierson, C., M. Aarts, and M. Andersen (2021). Validation of Spectral Simulation Tools for the Prediction of Indoor Daylight Exposure. In Building Simulation 2021, Bruges, Belgium. [Google Scholar]
  14. Subramaniam, S. (2017). Daylighting Simulations with Radiance using Matrix-based Methods. LBNL. [Google Scholar]
  15. Vetter, C., P. M. Pattison, K. Houser, M. Herf, A. J. Phillips, K. P. Wright, D. J. Skene, G. C. Brainard, D. B. Boivin, and G. Glickman (2021). A Review of Human Physiological Responses to Light: Implications for the Development of Integrative Lighting Solutions. LEUKOS. [Google Scholar]
  16. Walkenhorst, O., J. Luther, C. Reinhart, and J. Timmer (2002). Dynamic annual daylight simulations based on one-hour and one-minute means of irradiance data. Solar Energy 72(5), 385–395. [Google Scholar]
  17. Ward, G. and R. Shaskespeare (1998). Rendering with Radiance: The Art and Science of Lighting Visualization. San Francisco: Morgan Kaufmann Publishers, Inc. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.