Open Access
Issue
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 03002
Number of page(s) 8
Section Users, Tools and Software
DOI https://doi.org/10.1051/e3sconf/202236203002
Published online 01 December 2022
  1. Back, T. (1996). Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford university press. [Google Scholar]
  2. Cortez, P. (2014). Modern optimization with R. Springer. New York (United States of America). [Google Scholar]
  3. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182–197. [CrossRef] [Google Scholar]
  4. European Commission (2020). COM(2020) 662 final. A Renovation Wave for Europe - greening our buildings, creating jobs, improving lives. https://ec.europa.eu/energy/sites/ener/files/eu_renovation_wave_strategy.pdf [Google Scholar]
  5. European Commission (2021). Commission Recommendation (EU) 2021/1749 of 28 September 2021 on Energy Efficiency First: from principles to practice — Guidelines and examples for its implementation in decision-making in the energy sector and beyond. https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-first-principle_en [Google Scholar]
  6. Fialho, Álvaro & Hamadi, Y. & Schoenauer, Marc. (2012). A multi-objective approach to balance buildings construction cost and energy efficiency. Frontiers in Artificial Intelligence and Applications. 242. 961–966. doi: 10.3233/978-1-61499-098-7-961. [Google Scholar]
  7. Hernández, G., Serna V., (2017) Design of energy efficiency retrofitting projects for districts based on performance optimization of District Performance Indicators calculated through simulation models, Energy Procedia, Volume 122, Pages 721–726, [CrossRef] [Google Scholar]
  8. Hernández Moral, G., Serna-González, V., Massa G., Valmaseda, C. (2018), Energy Planning Support with Geomapping Tool and Energy Demand Estimation: The Energis Platform, ENERGY 2018 The Eighth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies [Google Scholar]
  9. Hernández Moral, G. et al (2019) ENERGIS: Decisionsupport tool for the implementation of energy policies at urban and regional level, IOP Conf. Ser.: Earth Environ. Sci. 290 012165 [CrossRef] [Google Scholar]
  10. IDAE (2012). Energy Perfomance Labelling Technical Basis Manual of existing buildings CE3X. (Manual de Fundamentos Técnicos de calificación energética de edificios existentes CE3X), IDAE, 2012 http://www6.mityc.es/aplicaciones/CE3X/Manual_us_uario%20CE3X_05.pdf [retrieved: March 2022] [Google Scholar]
  11. Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied mathematics and computation, 188(2), 1567–1579. [CrossRef] [Google Scholar]
  12. pagmo development team. (2021). Pygmo. https://esa.github.io/pygmo2/ [Google Scholar]
  13. pagmo development team. (2021). Getting started with hypervolumes. https://esa.github.io/pygmo2/tutorials/hypervolume.html [Google Scholar]
  14. Rey, Emmanuel, Office building retrofitting strategies: multicriteria approach of an architectural and technical issue, Energy and Buildings, Volume 36, Issue 4, 2004, Pages 367–372, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2004.01.015. [CrossRef] [Google Scholar]
  15. Serna-González, V., Hernández Moral, G., Miguel-Herrero, F.J., Valmaseda, C., Martirano, G., Pignatelli, F. and Vinci, F., Harmonisation of datasets of Energy Performance Certificates of buildings across Europe, EUR 30795 EN, Publications Office of the European Union, Luxembourg, 2021, ISBN 978-92-76-40827-7 (online), doi: 10.2760/500135 (online), JRC124887 [Google Scholar]
  16. Wang B., Xia X., Zhang J. A multi-objective optimization model for the life-cycle cost analysis and retrofitting planning of buildings. Energy Build., 77 (2014), pp. 227–235, (online) doi: 10.1016/j.enbuild.2014.03.025 [CrossRef] [Google Scholar]
  17. Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on evolutionary computation, 11(6), 712–731. [CrossRef] [Google Scholar]
  18. Zheng, X., Zhou, S., Xu, R., & Chen, H. (2020). Energyefficient scheduling for multi-objective two-stage flow shop using a hybrid ant colony optimisation algorithm. International Journal of Production Research, 58(13), 4103–4412 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.