Open Access
Issue
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 05003
Number of page(s) 8
Section Building Physics
DOI https://doi.org/10.1051/e3sconf/202236205003
Published online 01 December 2022
  1. Boermans, T., Bettgenhäuser, K., Offermann, M., & Schimschar, S. (2012). RENOVATION TRACKS FOR EUROPE UP TO 2050 - Building renovation in Europe - what are the choices? https://www.eurima.Org/uploads/ModuleXtender/Publications/90/Renovation_tracks_for_Europe_08_06_2012_FINAL.pdf [Google Scholar]
  2. Chen, X., Qu, K., Calautit, J., Ekambaram, A., Lu, W., Fox, C., Gan, G., & Riffat, S. (2020). Multi-criteria assessment approach for a residential building retrofit in Norway. Energy and Buildings, 215. https://doi.org/10.1016/j.enbuild.2019.109668 [Google Scholar]
  3. Chiu, S. K., & Lin, E. S. (2015). Tensile Membrane Façade: Performance Analysis of Energy, Daylighting and Material Optical Properties. In Advanced Building Skins (Ed.), 10th Conference on Advanced Building Skins. https://www.researchgate.net/publication/282650967 [Google Scholar]
  4. Cho, G.-Y., & Kim, M.-S.Y. & K.-W. (2013). Design Parameters of Double-Skin FaÇade for Improving the Performance of Natural Ventilation in High- Rise Residential Buildings. Journal of Asian Architecture and Building Engineering, 12(1), 125–132. https://doi.org/10.3130/jaabe.12.125 [Google Scholar]
  5. Ciampi, G., Spanodimitriou, Y., Scorpio, M., Rosato, A., & Sibilio, S. (2021a). Energy performances assessment of extruded and 3d printed polymers integrated into building envelopes for a south Italian case study. Buildings, 11(4). https://doi.org/10.3390/buildings11040141 [CrossRef] [Google Scholar]
  6. Ciampi, G., Spanodimitriou, Y., Scorpio, M., Rosato, A., & Sibilio, S. (2021b). Energy performance of PVC- Coated polyester fabric as novel material for the building envelope: Model validation and a refurbishment case study. Journal of Building Engineering, 41. https://doi.org/10.1016Zj.jobe.2021.102437 [Google Scholar]
  7. CORDIS - European Commission. Textile Architecture - Textile structures and buildings of the future - CONTEX-T project. Retrieved April 12, 2022, from https://cordis.europa.eu/project/idZ26574 [Google Scholar]
  8. Darvish, A., Eghbali, S. R., Eghbali, G., & Mahlabani, Y. G. (2020). The effects of building glass facade geometry on wind infiltration and heating and cooling energy consumption. International Journal of Technology, 11(2), 235–247. https://doi.org/10.14716/ijtech.v11i2.3201 [CrossRef] [Google Scholar]
  9. de Gracia, A., Navarro, L., Castell, A., & Cabeza, L. F. (2015). Energy performance of a ventilated double skin facade with PCM under different climates. Energy and Buildings, 91, 37–42. https://doi.Org/10.1016/j.enbuild.2015.01.011 [CrossRef] [Google Scholar]
  10. Diallo, T. M. O., Zhao, X., Dugue, A., Bonnamy, P., Javier Miguel, F., Martinez, A., Theodosiou, T., Liu, J. S., & Brown, N. (2017). Numerical investigation of the energy performance of an Opaque Ventilated Façade system employing a smart modular heat recovery unit and a latent heat thermal energy system. Applied Energy, 205, 130–152. https://doi.org/10.1016/j.apenergy.2017.07.042 [CrossRef] [Google Scholar]
  11. Dickson, A. (2004). Modelling Double-Skin Facades. [Google Scholar]
  12. Direktoratet for byggkvalitet. Building Acts and Regulations. Retrieved April 12, 2022, from https://dibk.no/regelverk/Building-Regulations-in-English/ [Google Scholar]
  13. EN12831. (2003). Heating Systems in Buildings - Method for Calculation of the Design Heat Load. [Google Scholar]
  14. Enova. (2004). Manual for Enøk Normtall. https://www.enova.no/ [Google Scholar]
  15. European Commission. (2018). Energy performance of buildings directive. https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy- performance-buildings-directive_en [Google Scholar]
  16. European Commission. (2021). Climate strategies & targets. https://ec.europa.eu/clima/policies/strategies_en [Google Scholar]
  17. European Environment Agency. (2021). Efficiency of conventional thermal electricity and heat production in Europe. https://www.eea.europa.eu/data-and-maps/indicators/efficiency-of-conventional-thermal-electricitygeneration-4/assessment-2 [Google Scholar]
  18. Facid North America. Fabric Mesh Facade. Retrieved April 12, 2022, from https://www.facidnorthamerica.com/ [Google Scholar]
  19. Gelesz, A., Catto Lucchino, E., Goia, F., Serra, V., & Reith, A. (2020). Characteristics that matter in a climate façade: A sensitivity analysis with building energy simulation tools. Energy and Buildings, 229. https://doi.org/10.1016/j.enbuild.2020.110467 [Google Scholar]
  20. G.I. Industrial Holding. (2022). TECHNICAL BROCHURE - CRA/K 15÷131. http://www.clint.it/ [Google Scholar]
  21. Goia, F. (2016). Search for the optimal window-to-wall ratio in office buildings in different European climates and the implications on total energy saving potential. Solar Energy, 132, 467–492. https://doi.org/10.1016/j.solener.2016.03.031 [Google Scholar]
  22. Gruner, M., & Haase, M. (2012). Façade-Integrated Ventilation Systems In Nordic Climate. 33rd AIVC Conference “Optimising Ventilative Cooling and Airtightness for [Nearly] Zero-Energy Buildings, IAQ and Comfort. ” [Google Scholar]
  23. Köhl, M. (2007). Performance, durability and sustainability of advanced windows and solar components for building envelopes. [Google Scholar]
  24. Lehrer, D. (2011). High-performance facades design strategies and applications in North America and Northern Europe. https://www.researchgate.net/publication/336349963 [Google Scholar]
  25. Naboni, E., & Tarantino, S. (2014). The Climate Based Design of Opaque Ventilated Façades. Conference Proceedings of the 9th ENERGY FORUM, 1023–1030. [Google Scholar]
  26. Nord, N., Ding, Y., Skrautvol, O., & Eliassen, S. F. (2021). Energy Pathways for Future Norwegian Residential Building Areas. Energies, 14(4), 934. https://doi.org/10.3390/en14040934 [CrossRef] [Google Scholar]
  27. Poirazis, H. (2004). Double Skin Façades for Office Buildings Division of Energy and Building Design. [Google Scholar]
  28. Roselli, C., Marrasso, E., Tariello, F., & Sasso, M. (2020). How different power grid efficiency scenarios affect the energy and environmental feasibility of a polygeneration system. Energy, 201. https://doi.org/10.1016/j.energy.2020.117576 [Google Scholar]
  29. Saad, M. M., & Araji, M. T. (2020). Optimization Of Double Skin Façades With Integrated Renewable Energy Source In Cold Climates. Building Performance Analysis Conference and SimBuild. [Google Scholar]
  30. Schimschar, S., Grözinger, J., Korte, H., Boermans, T., Lilova, V., & Bhar, R. (2011). Panorama of the European non-residential construction sector. http://leonardo-energy.pl/wp-content/uploads/2018/03/Europejski-sektor-budownictwa-niemieszkalnego.pdf [Google Scholar]
  31. Serge Ferrari (a). Frontside View 381. Retrieved May 12, 2020, from https://www.sergeferrari.com/products/frontside-range/frontside-view-381 [Google Scholar]
  32. Serge Ferrari (b). Textile and bioclimatic façade. Retrieved April 12, 2022, from https://www.sergeferrari.com/applications/bioclimatic-facade-building-construction-and-renovation [Google Scholar]
  33. Shahrzad, S., & Umberto, B. (2022). Parametric optimization of multifunctional integrated climate- responsive opaque and ventilated façades using CFD simulations. Applied Thermal Engineering, 204. https://doi.org/10.1016/j.applthermaleng.2021.117923 [Google Scholar]
  34. Soudian, S., & Berardi, U. (2021). Development of a performance-based design framework for multifunctional climate-responsive façades. Energy and Buildings, 231. https://doi.org/10.1016/j.enbuild.2020.110589 [Google Scholar]
  35. UNI/TS 11300-1. (2014). Energy Performance of Buildings Part 1: Evaluation of Energy Need for Space Heating and Cooling. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.