Open Access
Issue
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 06001
Number of page(s) 7
Section Thermal Storage
DOI https://doi.org/10.1051/e3sconf/202236206001
Published online 01 December 2022
  1. Arzamendia Lopez, J. P., Kuznik, F., Baillis, D., & Virgone, J. (2013). Numerical modeling and experimental validation of a PCM to air heat exchanger. Energy and Buildings, 64, 415–422. https://doi.org/10.1016/j.enbuild.2013.04.017 [CrossRef] [Google Scholar]
  2. ASHRAE (2004). ANSI/ASHRAE Standard 140: Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. [Google Scholar]
  3. Blair, N., Dobos, A. P., Freeman, J., Neises, T., Wagner, M., Ferguson, T., Gilman, P., & Janzou, S. (2014). System advisor model, SAM 2014.1.14: General description. Office of Scientific and Technical Information (OSTI). http://dx.doi.org/10.2172/1126294 [Google Scholar]
  4. Chen, X., Zhang, Q., Zhai, Z. J., & Ma, X. (2019a). Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings. Renewable Energy, 138, 39–53. https://doi.org/10.1016/j.renene.2019.01.026 [Google Scholar]
  5. Chen, X., Zhang, Q., Zhai, Z. (John), & Ma, X. (2019b). Optimization and sensitivity analysis of design parameters for a ventilation system using phase change materials. Building Simulation, 12(6), 961–971. https://doi.org/10.1007/s12273-019-0536-2 [CrossRef] [Google Scholar]
  6. Chiu, J. N. W., Gravoille, P., & Martin, V. (2013). Active free cooling optimization with thermal energy storage in Stockholm. Applied Energy, 109, 523–529. https://doi.org/10.1016/j.apenergy.2013.01.076 [CrossRef] [Google Scholar]
  7. Dolado, P., Lazaro, A., Marin, J. M., & Zalba, B. (2011). Characterization of melting and solidification in a real scale PCM-air heat exchanger: Numerical model and experimental validation. Energy Conversion and Management, 52(4), 1890–1907. https://doi.org/10.1016/j.enconman.2010.11.017 [CrossRef] [Google Scholar]
  8. Farah, S., Liu, M., & Saman, W. (2019). Numerical investigation of phase change material thermal storage for space cooling. Applied Energy, 239, 526–535. https://doi.org/10.1016/j.apenergy.2019.01.197 [CrossRef] [Google Scholar]
  9. Gholamibozanjani, G., & Farid, M. (2020). Peak load shifting using a price-based control in PCM-enhanced buildings. Solar Energy, 211, 661–673. https://doi.org/10.1016/j.solener.2020.09.016 [Google Scholar]
  10. Halawa, E., & Saman, W. (2011). Thermal performance analysis of a phase change thermal storage unit for space heating. Renewable Energy, 36(1), 259–264. https://doi.org/10.1016/j.renene.2010.06.029 [Google Scholar]
  11. HOMER Energy. (2016). HOMER® Pro Version 3.7 User Manual. [Google Scholar]
  12. Hu, Y., Guo, R., Heiselberg, P. K., & Johra, H. (2020). Modeling PCM phase change temperature and hysteresis in ventilation cooling and heating applications. Energies, 13(23), 6455. https://doi.org/10.3390/en13236455 [CrossRef] [Google Scholar]
  13. IEA (2018), The Future of Cooling, IEA, Paris https://www.iea.org/reports/the-future-of-cooling [Google Scholar]
  14. Kim, B., Yamaguchi, Y., Kimura, S., Ko, Y., Ikeda, K., & Shimoda, Y. (2020). Urban building energy modeling considering the heterogeneity of HVAC system stock: A case study on Japanese office building stock. Energy and Buildings, 207, 109590. https://doi.org/10.1016/j.enbuild.2019.109590 [CrossRef] [Google Scholar]
  15. Lamaison, N., Collette, S., Vallée, M., & Bavière, R. (2019). Storage influence in a combined biomass and power-to-heat district heating production plant. Energy, 186, 115714. https://doi.org/10.1016/j.energy.2019.07.044 [CrossRef] [Google Scholar]
  16. Lauster, M., Teichmann, J., Fuchs, M., Streblow, R., & Mueller, D. (2014). Low order thermal network models for dynamic simulations of buildings on city district scale. Building and Environment, 73, 223–231. https://doi.org/10.1016/j.buildenv.2013.12.016 [CrossRef] [Google Scholar]
  17. Liu, S., Iten, M., & Shukla, A. (2017). Numerical study on the performance of an air—Multiple PCMs unit for free cooling and ventilation. Energy and Buildings, 151, 520–533. https://doi.org/10.1016/j.enbuild.2017.07.005 [CrossRef] [Google Scholar]
  18. López, Rodolfo. (2021). iHOGA Version 3.1 User’s manual. [Google Scholar]
  19. Müller, D., Lauster, M., Constantin, A., Fuchs, M., & Remmen, P. (2016). AixLib - An Open-Source Modelica Library within the IEA-EBC Annex 60 Framework. [Google Scholar]
  20. Nellis, G., & Klein, S. (2009). Heat transfer. Cambridge University Press. [Google Scholar]
  21. Rouault, F., Bruneau, D., Sebastian, P., & Nadeau, J. (2016). Use of a latent heat thermal energy storage system for cooling a light-weight building: Experimentation and co-simulation. Energy and Buildings, 127, 479–487. https://doi.org/10.1016/j.enbuild.2016.05.082 [CrossRef] [Google Scholar]
  22. Simpkins, T., Cutler, D., Anderson, K., Olis, D., Elgqvist, E., Callahan, M., & Walker, A. (2014). REopt: A platform for energy system integration and optimization. http://dx.doi.org/10.1115/es2014-6570 [Google Scholar]
  23. Verhelst, C., Logist, F., Van Impe, J., & Helsen, L. (2012). Study of the optimal control problem formulation for modulating air-to-water heat pumps connected to a residential floor heating system. Energy and Buildings, 45, 43–53. https://doi.org/10.1016Zi.enbuild.2011.10.015 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.