Open Access
Issue
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 06003
Number of page(s) 6
Section Thermal Storage
DOI https://doi.org/10.1051/e3sconf/202236206003
Published online 01 December 2022
  1. Başer, T. and McCartney, J. S. (2020). Transient evaluation of a soil-borehole thermal energy storage system. Renewable Energy, 147, pp. 2582–2598. doi: 10.1016/j.renene.2018.11.012. [CrossRef] [Google Scholar]
  2. Cai, W. et al. (2021). Analysis of heat extraction performance and long-term sustainability for multiple deep borehole heat exchanger array: A project-based study. Applied Energy, 289 (October 2020), p. 116590. doi: 10.1016/j.apenergy.2021.116590. [CrossRef] [Google Scholar]
  3. European Commission (2020). 2050 Long-Term Strategy. Available at: https://ec.europa.eu/clima/policies/strategies/2050_en. [Google Scholar]
  4. Fadejev, J. and Kurnitski, J. (2015). Geothermal energy piles and boreholes design with heat pump in a whole building simulation software. Energy and Buildings, 106, pp. 23–34. doi: 10.1016/j.enbuild.2015.06.014. [CrossRef] [Google Scholar]
  5. Janiszewski, M. et al. (2018). In situ experiment and numerical model validation of a borehole heat exchanger in shallow hard crystalline rock. Energies, 11(4), pp. 1–21. doi: 10.3390/en11040963. [Google Scholar]
  6. Johnsson, J. and Adl-Zarrabi, B. (2019). Modelling and evaluation of groundwater filled boreholes subjected to natural convection. Applied Energy, 253 (July), p. 113555. doi: 10.1016/j.apenergy.2019.113555. [CrossRef] [Google Scholar]
  7. Melinder, Å. (2007). Thermophysical Properties of Aqueous Solutions Used as Secondary Working Fluids. Doctoral thesis, Royal Institute of Technology. Stockholm (Sweden). Available at: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A12169&ds wid=5866. [Google Scholar]
  8. Nadas, V. (2020). Advanced Design and Control Strategies to Optimize a Deep Borehole Field as LongTerm Thermal Storage. Master thesis, Aalto University. Espoo (Finland). Available at: https://aaltodoc.aalto.fi/handle/123456789/44961. [Google Scholar]
  9. Rees, S. J. and He, M. (2013). A three-dimensional numerical model of borehole heat exchanger heat transfer and fluid flow. Geothermics, 46, pp. 1–13. doi: 10.1016/j.geothermics.2012.10.004. [CrossRef] [Google Scholar]
  10. Reuss, M. (2015). The use of borehole thermal energy storage (BTES) systems. In Advances in Thermal Energy Storage Systems: Methods and Applications. Woodhead Publishing. Würzburg (Germany). doi: 10.1533/9781782420965.1.117. [Google Scholar]
  11. Todorov, O., Alanne, K., et al. (2021). A Novel Data Management Methodology and Case Study for Monitoring and Performance Analysis of Large-Scale Ground Source Heat Pump (GSHP) and Borehole Thermal Energy Storage (BTES) System. Energies, 14(6), p. 1523. doi: 10.3390/en14061523. [CrossRef] [Google Scholar]
  12. Todorov, O., Vallin, S., et al. (2021). Case study report for monitoring project - Aalto University New Campus Complex, Otaniemi (Espoo) Finland. In IEA HPT Annex 52-Long-term performance monitoring of GSHP systems serving commercial, institutional and multi-family buildings. Espoo (Finland). doi: 10.23697/cm70-g204. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.